The first computer I owned
The first computer I owned was a North Star Horizon. I bought it in kit form, which meant bags of capacitors, resistors, transistors, chips, printed circuit boards, etc, along with the circuit diagrams for each board. These all had to be soldered in the right holes, the chips socketed (no surface mount soldering for such a low volume system), and wires connected. I was amazed when the system booted the first time I powered it up; debugging with the very basic equipment I had would have been a nightmare. The only missing component was the power supply transformer, and a trip to the London-based supplier sorted that out. I saved a months’ salary by building the kit (which cost me 4-months salary, and I was one of the highest paid people in my circle).
The few individuals who bought a computer in the late 1970s bought either a Horizon or a Commodore Pet (which was more expensive, but came with an integrated monitor and keyboard). Computer ownership really started to take off when the BBC micro came along at the end of 1981, and could be bought for less than a months’ salary (at least for a white-collar worker).
My Horizon contained a Z80A clocking at 4MHz, 32K of RAM, and two 5 1/4-inch floppy drives (each holding 360K; the Wikipedia article says the drives held 90K, mine {according to the labels on the floppies, MD 525-10} are 40-track, 10-sector, double density). I later bought another 32K of memory; the system ROM was at 56K, and contained 4K of code, various tricks allowed the 4K above 60K to be used (the consistent quality of the soldering on one of the boards below identifies the non-hand built board).
The OS that came with the system was CP/M, renamed to CP/M-80 when the Intel 8086 came along, and will be familiar to anybody used to working with early versions of MS-DOS.
As a fan of Pascal, my development environment of choice was UCSD Pascal. The C compiler of choice was BDS C.
Horizon owners are total computer people 🙂 An emulator, running under Linux and capable of running Horizon disk images, is available for those wanting a taste of being a Horizon owner. I didn’t see any mention of audio emulation in the documentation; clicks and whirls from the floppy drive were a good way of monitoring compile progress without needing to look at the screen (not content with using our Horizon’s at home, another Horizon owner and I implemented a Horizon emulator in Fortran, running on the University’s Prime computers). I wonder how many Nobel-prize winners did their calculations on a Horizon?
The Horizon spec needs to be appreciated in the context of its time. When I worked in application support at the University of Surrey, users had a default file allocation of around 100K’ish (memory is foggy). So being able to store stuff on a 360K floppy, which could be purchased in boxes of 10, was a big deal. The mainframe/minicomputers of the day were available with single-digit megabytes, but many previous generation systems had under 100K of RAM. There were lots of programs out there still running in 64K. In terms of cpu power, nearly all existing systems were multi-user, and a less powerful, single-user, cpu beats sharing a more powerful cpu with 10-100 people.
In terms of sheer weight, visual appearance and electrical clout, the Horizon power supply far exceeds those seen in today’s computers, which look tame by comparison (two of those capacitors are 4-inches tall):
My Horizon has been sitting in the garage for 32-years, and tucked away in unused rooms for years before that. The main problem with finding out whether it still works is finding a device to connect to the 25-pin serial port. I have an old PC with a 9-pin serial port, but I have spent enough of my life fiddling around with serial-port cables and Kermit to be content trying a simpler approach. I connect the power supply and switched it on. There was a loud crack and a flash on the disk-controller board; probably a tantalum capacitor giving up the ghost (easy enough to replace). The primary floppy drive did spin up and shutdown after some seconds (as expected), but the internal floppy engagement arm (probably not its real name) does not swing free when I open the bay door (so I cannot insert a floppy).
I am hoping to find a home for it in a computer museum, and have emailed the two closest museums. If these museums are not interested, the first person to knock on my door can take it away, along with manuals and floppies.
Update: This North Star can now be seen at the Retro Computer Museum.
Linux has a sleeper agent working as a core developer
The latest news from Wikileaks, that GCHQ, the UK’s signal intelligence agency, has a sleeper agent working as a trusted member of the Linux kernel core development team should not come as a surprise to anybody.
The Linux kernel is embedded as a core component inside many critical systems; the kind of systems that intelligence agencies and other organizations would like full access.
The open nature of Linux kernel development makes it very difficult to surreptitiously introduce a hidden vulnerability. A friendly gatekeeper on the core developer team is needed.
In the Open source world, trust is built up through years of dedicated work. Funding the right developer to spend many years doing solid work on the Linux kernel is a worthwhile investment. Such a person eventually reaches a position where the updates they claim to have scrutinized are accepted into the codebase without a second look.
The need for the agent to maintain plausible deniability requires an arm’s length approach, and the GCHQ team made a wise choice in targeting device drivers as cost-effective propagators of hidden weaknesses.
Writing a device driver requires the kinds of specific know-how that is not widely available. A device driver written by somebody new to the kernel world is not suspicious. The sleeper agent has deniability in that they did not write the code, they simply ‘failed’ to spot a well hidden vulnerability.
Lack of know-how means that the software for a new device is often created by cutting-and-pasting code from an existing driver for a similar chip set, i.e., once a vulnerability has been inserted it is likely to propagate.
Perhaps it’s my lack of knowledge of clandestine control of third-party computers, but the leak reveals the GCHQ team having an obsession with state machines controlled by pseudo random inputs.
With their background in code breaking, I appreciate that GCHQ have lots of expertise to throw at doing clever things with pseudo random numbers (other than introducing subtle flaws in public key encryption).
What about the possibility of introducing non-random patterns in randomised storage layout algorithms (he says, waving his clueless arms around)?
Which of the core developers is most likely to be the sleeper agent? His codename, Basil Brush, suggests somebody from the boomer generation, or perhaps reflects some personal characteristic; it might also be intended to distract.
What steps need to be taken to prevent more sleeper agents joining the Linux kernel development team?
Requiring developers to provide a record of their financial history (say, 10-years worth), before being accepted as a core developer, will rule out many capable people. Also, this approach does not filter out ideologically motivated developers.
The world may have to accept that intelligence agencies are the future of major funding for widely used Open source projects.
Update
Turns out the sleeper agent was working on xz.
The aura of software quality
Bad money drives out good money, is a financial adage. The corresponding research adage might be “research hyperbole incentivizes more hyperbole”.
Software quality appears to be the most commonly studied problem in software engineering. The reason for this is that use of the term software quality imbues what is said with an aura of relevance; all that is needed is a willingness to assert that some measured attribute is a metric for software quality.
Using the term “software quality” to appear relevant is not limited to researchers; consultants, tool vendors and marketers are equally willing to attach “software quality” to whatever they are selling.
When reading a research paper, I usually hit the delete button as soon as the authors start talking about software quality. I get very irritated when what looks like an interesting paper starts spewing “software quality” nonsense.
The paper: A Family of Experiments on Test-Driven Development commits the ‘crime’ of framing what looks like an interesting experiment in terms of software quality. Because it looked interesting, and the data was available, I endured 12 pages of software quality marketing nonsense to find out how the authors had defined this term (the percentage of tests passed), and get to the point where I could start learning about the experiments.
While the experiments were interesting, a multi-site effort and just the kind of thing others should be doing, the results were hardly earth-shattering (the experimental setup was dictated by the practicalities of obtaining the data). I understand why the authors felt the need for some hyperbole (but 12-pages). I hope they continue with this work (with less hyperbole).
Anybody skimming the software engineering research literature will be dazed by the number and range of factors appearing to play a major role in software quality. Once they realize that “software quality” is actually a meaningless marketing term, they are back to knowing nothing. Every paper has to be read to figure out what definition is being used for “software quality”; reading a paper’s abstract does not provide the needed information. This is a nightmare for anybody seeking some understanding of what is known about software engineering.
When writing my evidence-based software engineering book I was very careful to stay away from the term “software quality” (one paper on perceptions of software product quality is discussed, and there are around 35 occurrences of the word “quality”).
People in industry are very interested in software quality, and sometimes they have the confusing experience of talking to me about it. My first response, on being asked about software quality, is to ask what the questioner means by software quality. After letting them fumble around for 10 seconds or so, trying to articulate an answer, I offer several possibilities (which they are often not happy with). Then I explain how “software quality” is a meaningless marketing term. This leaves them confused and unhappy. People have a yearning for software quality which makes them easy prey for the snake-oil salesmen.
Software engineering research problems having worthwhile benefits
Which software engineering research problems are likely to yield good-enough solutions that provide worthwhile benefits to professional software developers?
I can think of two (hopefully there are more):
- what is the lifecycle of software? For instance, the expected time-span of the active use of its various components, and the evolution of its dependency ecosystem,
- a model of the main processes involved in a software development project.
Solving problems requires data, and I think it is practical to collect the data needed to solve these two problems; here is some: application lifetime data, and detailed project data (a lot more is needed).
Once a good-enough solution is available, its practical application needs to provide a worthwhile benefit to the customer (when I was in the optimizing compiler business, I found that many customers were not interested in more compact code unless the executable was at least a 10% smaller; this was the era of computer memory often measured in kilobytes).
Investment decisions require information about what is likely to happen in the future, and an understanding of common software lifecycles is needed. The fact that most source code has a brief existence (a few years) and is rarely modified by somebody other than the original author, has obvious implications for investment decisions intended to reduce future maintenance costs.
Running a software development project requires an understanding of the processes involved. This knowledge is currently acquired by working on projects managed by people who have successfully done it before. A good-enough model is not going to replace the need for previous experience, some amount of experience is always going to be needed, but it will provide an effective way of understanding what is going on. There are probably lots of different good-enough ways of running a project, and I’m not expecting there to be a one-true-way of optimally running a project.
Perhaps the defining characteristic of the solution to both of these problems is lots of replication data.
Applications are developed in many ecosystems, and there is likely to be variations between the lifecycles that occur in different ecosystems. Researchers tend to focus on Github because it is easily accessible, which is no good when replications from many ecosystems are needed (an analysis of Github source lifetime has been done).
Projects come in various shapes and sizes, and a good-enough model needs to handle all the combinations that regularly occur. Project level data is not really present on Github, so researchers need to get out from behind their computers and visit real companies.
Given the payback time-frame for software engineering research, there are problems which are not cost-effective to attempt to answer. Suggestions for other software engineering problems likely to be worthwhile trying to solve welcome.
The impact of believability on reasoning performance
What are the processes involved in reasoning? While philosophers have been thinking about this question for several thousand years, psychologists have been running human reasoning experiments for less than a hundred years (things took off in the late 1960s with the Wason selection task).
Reasoning is a crucial ability for software developers, and I thought that there would be lots to learn from the cognitive psychologists research into reasoning. After buying all the books, and reading lots of papers, I realised that the subject was mostly convoluted rabbit holes individually constructed by tiny groups of researchers. The field of decision-making is where those psychologists interested in reasoning, and a connection to reality, hang-out.
Is there anything that can be learned from research into human reasoning (other than that different people appear to use different techniques, and some problems are more likely to involve particular techniques)?
A consistent result from experiments involving syllogistic reasoning is that subjects are more likely to agree that a conclusion they find believable follows from the premise (and are more likely to disagree with a conclusion they find unbelievable). The following is perhaps the most famous syllogism (the first two lines are known as the premise, and the last line is the conclusion):
All men are mortal. Socrates is a man. Therefore, Socrates is mortal. |
Would anybody other than a classically trained scholar consider that a form of logic invented by Aristotle provides a reasonable basis for evaluating reasoning performance?
Given the importance of reasoning ability in software development, there ought to be some selection pressure on those who regularly write software, e.g., software developers ought to give a higher percentage of correct answers to reasoning problems than the general population. If the selection pressure for reasoning ability is not that great, at least software developers have had a lot more experience solving this kind of problem, and practice should improve performance.
The subjects in most psychology experiments are psychology undergraduates studying in the department of the researcher running the experiment, i.e., not the general population. Psychology is a numerate discipline, or at least the components I have read up on have a numeric orientation, and I have met a fair few psychology researchers who are decent programmers. Psychology undergraduates must have an above general-population performance on syllogism problems, but better than professional developers? I don’t think so, but then I may be biased.
A study by Winiger, Singmann, and Kellen asked subjects to specify whether the conclusion of a syllogism was valid/invalid/don’t know. The syllogisms used were some combination of valid/invalid and believable/unbelievable; examples below:
Believable Unbelievable Valid No oaks are jubs. No trees are punds. Some trees are jubs. Some Oaks are punds. Therefore, some trees Therefore, some oaks are not oaks. are not trees. Invalid No tree are brops. No oaks are foins. Some oaks are brops. Some trees are foins. Therefore, some trees Therefore, some oaks are not oaks. are not trees. |
The experiment was run using an online crowdsource site, and 354 data sets were obtained.
The plot below shows the impact of conclusion believability (red)/unbelievability (blue/green) on subject performance, when deciding whether a syllogism was valid (left) or invalid (right), (code+data):
The believability of the conclusion biases the responses away/towards the correct answer (the error bars are tiny, and have not been plotted). Building a regression model puts numbers to the difference, and information on the kind of premise can also be included in the model.
Do professional developers exhibit such a large response bias (I would expect their average performance to be better)?
People tend to write fewer negative tests, than positive tests. Is this behavior related to the believability that certain negative events can occur?
Believability is an underappreciated coding issue.
Hopefully people will start doing experiments to investigate this issue 🙂
Code bureaucracy can reduce the demand for cognitive resources
A few weeks ago I discussed why I thought that research code was likely to remain a tangled mess of spaghetti code.
Everybody’s writing, independent of work-place, starts out as a tangled mess of spaghetti code; some people learn to write code in a less cognitively demanding style, and others stick with stream-of-conscious writing.
Why is writing a tangled mess of spaghetti code (sometimes) not cost-effective, and what are the benefits in making a personal investment in learning to write code in another style?
Perhaps the defining characteristic of a tangled mess of spaghetti code is that everything appears to depend on everything else, consequently: working out the impact of a change to some sequence of code requires an understanding of all the other code (to find out what really does depend on what).
When first starting to learn to program, the people who can hold the necessary information on increasing amounts of code in their head are the ones who manage to create running (of sorts) programs; they have the ‘knack’.
The limiting factor for an individual’s software development is the amount of code they can fit in their head, while going about their daily activities. The metric ‘code that can be fitted in a person’s head’ is an easy concept to grasp, but its definition in terms of the cognitive capacity to store, combine and analyse information in long term memory and the episodic memory of earlier work is difficult to pin down. The reason people live a monks existence when single-handedly writing 30-100 KLOC spaghetti programs (the C preprocessor Richard Stallman wrote for gcc is a good example), is that they have to shut out all other calls on their cognitive resources.
Given time, and the opportunity for some trial and error, a newbie programmer who does not shut their non-coding life down can create, say, a 1,000+ LOC program. Things work well enough, what is the problem?
The problems start when the author stops working on the code for long enough for them to forget important dependencies; making changes to the code now causes things to mysteriously stop working. Our not so newbie programmer now has to go through the frustrating and ego-denting experience of reacquainting themselves with how the code fits together.
There are ways of organizing code such that less cognitive resources are needed to work on it, compared to a tangled mess of spaghetti code. Every professional developer has a view on how best to organize code, what they all have in common is a lack of evidence for their performance relative to other possibilities.
Code bureaucracy does not sound like something that anybody would want to add to their program, but it succinctly describes the underlying principle of all the effective organizational techniques for code.
Bureaucracy compartmentalizes code and arranges the compartments into some form of hierarchy. The hoped-for benefit of this bureaucracy is a reduction in the cognitive resources needed to work on the code. Compartmentalization can significantly reduce the amount of a program’s code that a developer needs to keep in their head, when working on some functionality. It is possible for code to be compartmentalized in a way that requires even more cognitive resources to implement some functionality than without the bureaucracy. Figuring out the appropriate bureaucracy is a skill that comes with practice and knowledge of the application domain.
Once a newbie programmer is up and running (i.e., creating programs that work well enough), they often view the code bureaucracy approach as something that does not apply to them (and if they rarely write code, it might not apply to them). Stream of conscious coding works for them, why change?
I have seen people switch to using code bureaucracy for two reasons:
- peer pressure. They join a group of developers who develop using some form of code bureaucracy, and their boss tells them that this is the way they have to work. In this case there is the added benefit of being able to discuss things with others,
- multiple experiences of the costs of failure. The costs may come from the failure to scale a program beyond some amount of code, or having to keep investing in learning how previously written programs work.
Code bureaucracy has many layers. At the bottom there is splitting code up into functions/methods, then at the next layer related functions are collected together into files/classes, then the layers become less generally agreed upon (different directories are often involved).
One of the benefits of bureaucracy, from the management perspective, is interchangeability of people. Why would somebody make an investment in code bureaucracy if they were not the one likely to reap the benefit?
A claimed benefit of code bureaucracy is ease of wholesale replacement of one compartment by a new one. My experience, along with the little data I have seen, suggests that major replacement is rare, i.e., this is not a commonly accrued benefit.
Another claimed benefit of code bureaucracy is that it makes programs easier to test. What does ‘easier to test’ mean? I have seen reliable programs built from spaghetti code, and unreliable programs packed with code bureaucracy. A more accurate claim is that it can be unexpectedly costly to test programs built from spaghetti code after they have been changed (because of the greater likelihood of the changes having unexpected consequences). A surprising number of programs built from spaghetti code continue to be used in unmodified form for years, because nobody dare risk the cost of checking that they continue to work as expected after a modification
Fitting discontinuous data from disparate sources
Sorting and searching are probably the most widely performed operations in computing; they are extensively covered in volume 3 of The Art of Computer Programming. Algorithm performance is influence by the characteristics of the processor on which it runs, and the size of the processor cache(s) has a significant impact on performance.
A study by Khuong and Morin investigated the performance of various search algorithms on 46 different processors. Khuong The two authors kindly sent me a copy of the raw data; the study webpage includes lots of plots.
The performance comparison involved 46 processors (mostly Intel x86 compatible cpus, plus a few ARM cpus) times 3 array datatypes times 81 array sizes times 28 search algorithms. First a 32/64/128-bit array of unsigned integers containing N elements was initialized with known values. The benchmark iterated 2-million times around randomly selecting one of the known values, and then searching for it using the algorithm under test. The time taken to iterate 2-million times was recorded. This was repeated for the 81 values of N, up to 63,095,734, on each of the 46 processors.
The plot below shows the results of running each algorithm benchmarked (colored lines) on an Intel Atom D2700 @ 2.13GHz, for 32-bit array elements; the kink in the lines occur roughly at the point where the size of the array exceeds the cache size (all code+data):
What is the most effective way of analyzing the measurements to produce consistent results?
One approach is to build two regression models, one for the measurements before the cache ‘kink’ and one for the measurements after this kink. By adding in a dummy variable at the kink-point, it is possible to merge these two models into one model. The problem with this approach is that the kink-point has to be chosen in advance. The plot shows that the performance kink occurs before the array size exceeds the cache size; other variables are using up some of the cache storage.
This approach requires fitting 46*3=138 models (I think the algorithm used can be integrated into the model).
If data from lots of processors is to be fitted, or the three datatypes handled, an automatic way of picking where the first regression model should end, and where the second regression model should start is needed.
Regression discontinuity design looks like it might be applicable; treating the point where the array size exceeds the cache size as the discontinuity. Traditionally discontinuity designs assume a sharp discontinuity, which is not the case for these benchmarks (R’s rdd package worked for one algorithm, one datatype running on one processor); the more recent continuity-based approach supports a transition interval before/after the discontinuity. The R package rdrobust supports a continued-based approach, but seems to expect the discontinuity to be a change of intercept, rather than a change of slope (or rather, I could not figure out how to get it to model a just change of slope; suggestions welcome).
Another approach is to use segmented regression, i.e., one of more distinct lines. The package segmented supports fitting this kind of model, and does estimate what they call the breakpoint (the user has to provide a first estimate).
I managed to fit a segmented model that included all the algorithms for 32-bit data, running on one processor (code+data). Looking at the fitted model I am not hopeful that adding data from more than one processor would produce something that contained useful information. I suspect that there are enough irregular behaviors in the benchmark runs to throw off fitting quality.
I’m always asking for more data, and now I have more data than I know how to analyze in a way that does not require me to build 100+ models 🙁
Suggestions welcome.
Research software code is likely to remain a tangled mess
Research software (i.e., software written to support research in engineering or the sciences) is usually a tangled mess of spaghetti code that only the author knows how to use. Very occasionally I encounter well organized research software that can be used without having an email conversation with the author (who has invariably spent years iterating through many versions).
Spaghetti code is not unique to academia, there is plenty to be found in industry.
Structural differences between academia and industry make it likely that research software will always be a tangled mess, only usable by the person who wrote it. These structural differences include:
- writing software is a low status academic activity; it is a low status activity in some companies, but those involved don’t commonly have other higher status tasks available to work on. Why would a researcher want to invest in becoming proficient in a low status activity? Why would the principal investigator spend lots of their grant money hiring a proficient developer to work on a low status activity?
I think the lack of status is rooted in researchers’ lack of appreciation of the effort and skill needed to become a proficient developer of software. Software differs from that other essential tool, mathematics, in that most researchers have spent many years studying mathematics and understand that effort/skill is needed to be able to use it.
Academic performance is often measured using citations, and there is a growing move towards citing software,
- many of those writing software know very little about how to do it, and don’t have daily contact with people who do. Recent graduates are the pool from which many new researchers are drawn. People in industry are intimately familiar with the software development skills of recent graduates, i.e., the majority are essentially beginners; most developers in industry were once recent graduates, and the stream of new employees reminds them of the skill level of such people. Academics see a constant stream of people new to software development, this group forms the norm they have to work within, and many don’t appreciate the skill gulf that exists between a recent graduate and an experienced software developer,
- paid a lot less. The handful of very competent software developers I know working in engineering/scientific research are doing it for their love of the engineering/scientific field in which they are active. Take this love away, and they will find that not only does industry pay better, but it also provides lots of interesting projects for them to work on (academics often have the idea that all work in industry is dull).
I have met people who have taken jobs writing research software to learn about software development, to make themselves more employable outside academia.
Does it matter that the source code of research software is a tangled mess?
The author of a published paper is supposed to provide enough information to enable their work to be reproduced. It is very unlikely that I would be able to reproduce the results in a chemistry or genetics paper, because I don’t know enough about the subject, i.e., I am not skilled in the art. Given a tangled mess of source code, I think I could reproduce the results in the associated paper (assuming the author was shipping the code associated with the paper; I have encountered cases where this was not true). If the code failed to build correctly, I could figure out (eventually) what needed to be fixed. I think people have an unrealistic expectation that research code should just build out of the box. It takes a lot of work by a skilled person to create to build portable software that just builds.
Is it really cost-effective to insist on even a medium-degree of buildability for research software?
I suspect that the lifetime of source code used in research is just as short and lonely as it is in other domains. One study of 214 packages associated with papers published between 2001-2015 found that 73% had not been updated since publication.
I would argue that a more useful investment would be in testing that the software behaves as expected. Many researchers I have spoken to have not appreciated the importance of testing. A common misconception is that because the mathematics is correct, the software must be correct (completely ignoring the possibility of silly coding mistakes, which everybody makes). Commercial software has the benefit of user feedback, for detecting some incorrect failures. Research software may only ever have one user.
Research software engineer is the fancy title now being applied to people who write the software used in research. Originally this struck me as an example of what companies do when they cannot pay people more, they give them a fancy title. Recently the Society of Research Software Engineering was setup. This society could certainly help with training, but I don’t see it making much difference with regard status and salary.
Update
This post generated a lot of discussion on the research software mailing list, and Peter Schmidt invited me to do a podcast with him. Here it is.
Widely used programming languages: past, present, and future
Programming languages are like pop groups in that they have followers, fans and supporters; new ones are constantly being created and some eventually become widely popular, while those that were once popular slowly fade away or mutate into something else.
Creating a language is a relatively popular activity. Science fiction and fantasy authors have been doing it since before computers existed, e.g., the Elf language Quenya devised by Tolkien, and in the computer age Star Trek’s Klingon. Some very good how-to books have been written on the subject.
As soon as computers became available, people started inventing programming languages.
What have been the major factors influencing the growth to widespread use of a new programming languages (I’m ignoring languages that become widespread within application niches)?
Cobol and Fortran became widely used because there was widespread implementation support for them across computer manufacturers, and they did not have to compete with any existing widely used languages. Various niches had one or more languages that were widely used in that niche, e.g., Algol 60 in academia.
To become widely used during the mainframe/minicomputer age, a new language first had to be ported to the major computers of the day, whose products sometimes supported multiple, incompatible operating systems. No new languages became widely used, in the sense of across computer vendors. Some new languages were widely used by developers, because they were available on IBM computers; for several decades a large percentage of developers used IBM computers. Based on job adverts, RPG was widely used, but PL/1 not so. The use of RPG declined with the decline of IBM.
The introduction of microcomputers (originally 8-bit, then 16, then 32, and finally 64-bit) opened up an opportunity for new languages to become widely used in that niche (which would eventually grow to be the primary computing platform of its day). This opportunity occurred because compiler vendors for the major languages of the day did not want to cannibalize their existing market (i.e., selling compilers for a lot more than the price of a microcomputer) by selling a much lower priced product on microcomputers.
BASIC became available on practically all microcomputers, or rather some dialect of BASIC that was incompatible with all the other dialects. The availability of BASIC on a vendor’s computer promoted sales of the hardware, and it was not worthwhile for the major vendors to create a version of BASIC that reduced portability costs; the profit was in games.
The dominance of the Microsoft/Intel partnership removed the high cost of porting to lots of platforms (by driving them out of business), but created a major new obstacle to the wide adoption of new languages: Developer choice. There had always been lots of new languages floating around, but people only got to see the subset that were available on the particular hardware they targeted. Once the cpu/OS (essentially) became a monoculture most new languages had to compete for developer attention in one ecosystem.
Pascal was in widespread use for a few years on micros (in the form of Turbo Pascal) and university computers (the source of Wirth’s ETH compiler was freely available for porting), but eventually C won developer mindshare and became the most widely used language. In the early 1990s C++ compiler sales took off, but many developers were writing C with a few C++ constructs scattered about the code (e.g., use of new
, rather than malloc
/free
).
Next, the Internet took off, and opened up an opportunity for new languages to become dominant. This opportunity occurred because Internet related software was being made freely available, and established compiler vendors were not interested in making their products freely available.
There were people willing to invest in creating a good-enough implementation of the language they had invented, and giving it away for free. Luck, plus being in the right place at the right time resulted in PHP and Javascript becoming widely used. Network effects prevent any other language becoming widely used. Compatible dialects of PHP and Javascript may migrate widespread usage to quite different languages over time, e.g., Facebook’s Hack.
Java rode to popularity on the coat-tails of the Internet, and when it looked like security issues would reduce it to niche status, it became the vendor supported language for one of the major smart-phone OSs.
Next, smart-phones took off, but the availability of Open Source compilers closed the opportunity window for new languages to become dominant through lack of interest from existing compiler vendors. Smart-phone vendors wanted to quickly attract developers, which meant throwing their weight behind a language that many developers were already familiar with; Apple went with Objective-C (which evolved to Swift), Google with Java (which evolved to Kotlin, because of the Oracle lawsuit).
Where does Python fit in this grand scheme? I don’t yet have an answer, or is my world-view wrong to treat Python usage as being as widespread as C/C++/Java?
New programming languages continue to be implemented; I don’t see this ever stopping. Most don’t attract more users than their implementer, but a few become fashionable amongst the young, who are always looking to attach themselves to something new and shiny.
Will a new programming language ever again become widely used?
Like human languages, programming languages experience strong networking effects. Widely used languages continue to be widely used because many companies depend on code written in it, and many developers who can use it can obtain jobs; what company wants to risk using a new language only to find they cannot hire staff who know it, and there are not many people willing to invest in becoming fluent in a language with no immediate job prospects.
Today’s widely used programmings languages succeeded in a niche that eventually grew larger than all the other computing ecosystems. The Internet and smart-phones are used by everybody on the planet, there are no bigger ecosystems to provide new languages with a possible route to widespread use. To be widely used a language first has to become fashionable, but from now on, new programming languages that don’t evolve from (i.e., be compatible with) current widely used languages are very unlikely to migrate from fashionable to widely used.
It has always been possible for a proficient developer to dedicate a year+ of effort to create a new language implementation. Adding the polish need to make it production ready used to take much longer, but these days tool chains such as LLVM supply a lot of the heavy lifting. The problem for almost all language creators/implementers is community building; they are terrible at dealing with other developers.
It’s no surprise that nearly all the new languages that become fashionable originate with language creators who work for a company that happens to feel a need for a new language. Examples include:
- Go created by Google for internal use, and attracted an outside fan base. Company languages are not new, with IBM’s PL/1 being the poster child (or is there a more modern poster child). At the moment Go is a trendy language, and this feeds a supply of young developers willing to invest in learning it. Once the trendiness wears off, Google will start to have problems recruiting developers, the reason: Being labelled as a Go developer limits job prospects when few other companies use the language. Talk to a manager who has tried to recruit developers to work on applications written in Fortran, Pascal and other once-widely used languages (and even wannabe widely used languages, such as Ada),
- Rust a vanity project from Mozilla, which they have now
abandonedcast adrift. Did Rust become fashionable because it arrived at the right time to become the not-Google language? I await a PhD thesis on the topic of the rise and fall of Rust, - Microsoft’s C# ceased being trendy some years ago. These days I don’t have much contact with developers working in the Microsoft ecosystem, so I don’t know anything about the state of the C# job market.
Every now and again a language creator has the social skills needed to start an active community. Zig caught my attention when I read that its creator, Andrew Kelley, had quit his job to work full-time on Zig. Two and a-half years later Zig has its own track at FOSEM’21.
Will Zig become the next fashionable language, as Rust/Go popularity fades? I’m rooting for Zig because of its name, there are relatively few languages whose name starts with Z; the start of the alphabet is over-represented with language names. It would be foolish to root for a language because of a belief that it has magical properties (e.g., powerful, readable, maintainable), but the young are foolish.
Performance impact of comments on tasks taking a few minutes
How cost-effective is an investment in commenting code?
Answering this question requires knowing the time needed to write the comment and the time they save for later readers of the code.
A recent study investigated the impact of comments in small programming tasks on developer performance, and Sebastian Nielebock, the first author, kindly sent me a copy of the data.
How might the performance impact of comments be measured?
The obvious answer is to ask subjects to solve a coding problem, with half the subjects working with code containing comments and the other half the same code without the comments. This study used three kinds of commenting: No comments, Implementation comments and Documentation comments; the source was in Java.
Were the comments in the experiment useful, in the sense of providing information that was likely to save readers some time? A preliminary run was used to check that the comments provided some benefit.
The experiment was designed to be short enough that most subjects could complete it in less than an hour (average time to complete all tasks was 31 minutes). My own experience with running experiments is that it is possible to get professional developers to donate an hour of their time.
What is a realistic and experimentally useful amount of work to ask developers to in an hour?
The authors asked subjects to complete 9-tasks; three each of applying the code (i.e., use the code’s API), fix a bug in the code, and extend the code. Would a longer version of one of each, rather than a shorter three of each been better? I think the only way to find out is to try it both ways (I hope the authors plan to do another version).
What were the results (code+data)?
Regular readers will know, from other posts discussing experiments, that the biggest factor is likely to be subject (professional developers+students) differences, and this is true here.
Based on a fitted regression model, Documentation comments slowed performance on a task by 30 seconds, compared to No comments and Implementation comments (which both had the same performance impact). Given that average task completion time was 205 seconds, this is a 15% slowdown for Documentation comments.
This study set out to measure the performance impact of comments on small programming tasks. The answer, at least for tasks designed to take a few minutes, is that No comments, or if comments are required, then write Implementation comments.
This experiment measured the performance impact of comments on developers who did not write the code containing them. These developers have to first read and understand the comments (which takes time). However, the evidence suggests that code is mostly modified by the developer who wrote it (just reading the code does not leave a record that can be analysed). In this case, the reading a comment (that the developer previously wrote) can trigger existing memories, i.e., it has a greater information content for the original author.
Will comments have a bigger impact when read by the person who wrote them (and the code), or on tasks taking more than a few minutes? I await the results of more experiments…
Update: I have updated the script based on feedback about the data from Sebastian Nielebock.