Archive

Archive for June, 2018

Time taken to compile a source file

June 29, 2018 No comments

How long will it take to compile a source file?

When computers were a lot slower than they are today, this question was of general interest. Job scheduling is more effective when reliable runtime estimates are available, and developers want to know if there is enough time to get a coffee before the compile finishes.

An embarrassing fact about compile time performance, used to be that a large percentage of compile time was spent doing lexical analysis [“The cost of lexical analysis”, I cannot find an online copy]. Why was this embarrassing? Compiler writers like to boast about all the fancy optimizations their compiler does; but doing fancy stuff consumes lots of resources, so why were compilers spending so much of their time doing simple things like lexical analysis? The reality was that fancy compiler optimizations were not commercially viable until developer computers contained tens of megabytes of memory, i.e., very few pre-1990 compilers did any real optimization (people are still fussing over lexer performance).

An analysis of the data in Captain Dennis Miller’s Masters thesis (late Rome period), finds compile time is proportional to the square root of the number of tokens in the source (code+data); more complicated models are a slightly better fit. Where did square root come from? I expected a linear relationship, but would be willing to go with log. The measurements are from Ada compilers in the mid 1980s. I know several people who worked on Ada compilers during that time, and they were implementing the latest fancy optimizations (Ada was going to be the next big thing and the venture capital was flowing; big companies, with big computers were going to be paying lots of money to use Ada, but then microcomputers came along). I think that square root is driven by OS resource limitations, the compilers are using lots of memory and a noticeable amount of time is spent swapping.

So computers got a lot faster and people lost interest in estimates of how long it would take to compile individual files. I have not seen any interest in predicting how long it would take to compile whole projects (just complaints about how long it takes). There has been some work on progress indicators, updated as compilation progresses, which is a step in the right direction. Perhaps somebody has recorded compile time information and thrown machine learning at it; I usually ignore machine learning papers applied to software engineering and perhaps I have missed something. Pointers to project compile time prediction work welcome.

Then along came just-in-time compilation. Now people want to estimate how long it will take to generate machine code from some intermediate form, that is being interpreted.

The plot below (thanks to Rafael Auler for kindly supplying the data from his paper) shows the time taken to generate code from functions containing a given number of LLVM instructions (an intermediate code), at optimization level O3. The red line is a regression fit to one of the ‘arms’ and shows constant time for less than 100’ish instructions and then a linear relationship. I have no idea why the time is roughly constant for a large number of functions.

Time taken to convert functions containing a given number of LLVM instructions to machine code

There is a lot of variation for function containing the same number of instructions. This is to be expected when lots of different optimizations are being tried; sometimes a function will contain lots of the kind of code that a particular optimization spends lot of times process and sometimes the code will not contain anything interesting (i.e., no optimizations are found).

Undergraduates and learning to program

June 25, 2018 4 comments

I last looked at the research on teaching programming around 10 years ago and I have been catching up with what has been going on; in brief: same old, same old. One of the best papers on the subject is still: Language-independent conceptual “Bugs”

The research activity is still focused on making the tools and language ‘better’. There is a defining silence on the possibility that those doing the teaching could not teach their way out of a paper bag. Nobody is brave enough to suggest that teacher training might be a worthwhile investment, or that lectures oriented to what is useful (rather than what the lecturer finds interesting) would be appreciated by students.

I have always thought that researching the teaching of programming had no practical purpose, other than possibly helping universities increase the number of students graduating with computing degrees (some universities are solving the problem students have with programming by offering degrees that don’t involve being able to program). I still think that teaching programming to school children is at best a waste of time.

My experience with students learning to program is from a very long time ago. The process involved listening to confusing and disjoint lectures, reading books and figuring out what worked by trial and error. Students were not taught to program, they got thrown in at the deep and were expected to survive. Anybody who could handle this stood some chance of being able to handle developing software in the ‘real world’; universities were (accidentally) graduating people with the skills industry needed. However, these days universities are supposed to be customer focused, what industry needs is irrelevant (my experience of sitting on departmental industry panels is that the head of department tells us what they are thinking of doing {i.e., new courses for which there will be lots of paying students} and we try to talk him/her out of the sillier ideas); too many fee paying students find programming too hard, let’s offer computing degrees that don’t require any programming has been the only workable solution to-date.

Would you hire a recent graduate, for a development role, who had trouble figuring out how to fix syntax errors in their code? Surely, the minimum requirement is somebody who gets some pleasure from coding, even if they don’t want to spend lots of time doing it.

There is a shortage of software developers and flying turkeys are still with us.

Categories: Uncategorized Tags: , ,

Number of parameters vs. accessing globals

June 19, 2018 No comments

I spend a lot of time looking at software engineering data, asking, what is the story here?

In a previous post I suggested that the distribution of the number of functions defined to have a given number of parameters, might be a signature of developer beliefs about the relative cost of parameter passing vs accessing globals.

Looking at the data that Iran Rodrigues Gonzaga Junior made available (good man), as part of his thesis Empirical Studies on Fine-Grained Feature Dependencies, I saw it contained information about the number of parameters in a function definition and whether functions accessed a global (Gonzaga’s research question is in another direction; I am always repurposing data).

Are functions that access globals, defined with fewer parameters, compared to those that do not contain any such access? The plot below shows a count of the number of functions defined to have a given number of parameters, for four systems written in C; the solid lines are functions that did not access globals, the dashed lines are functions that accessed globals (code+data).

Number of functions defined to have a given number of parameters; four systems, written in C

Over all 50 projects measured, functions that don’t access globals are defined, on average, to have an extra 0.7 parameters (the fitted Poisson regression models are better than a poke in the eye {i.e., the distribution is not really Poisson}, it’s more informative to look at the plotted data).

There is a lot of variation between projects (I picked these four because they were the larger projects and showed variation in behaviors). While the shape of the distributions varies a lot, there is always a noticeable difference in the mean.

Is this difference between projects a difference in developer beliefs, a difference in application requirements, a difference in developer coding habits (and parameter usage is a side effect; are there really that many getters and setters)?

I was hoping for a simple answer, and could not find one. Since I am writing a book and not researching individual issues in detail, it’s time to move on.

Ideas welcome.

Main memory: the crucial component that vendors don’t mention

June 14, 2018 No comments

CPU performance hogs the limelight when people discuss the year-on-year increases in computing power that used to occur.

This focus on cpu performance was/is driven by marketing, the people with the money either don’t want customers thinking about the performance impact of main memory size or speed, or want them to treat the processor as the most important component of a computer. Vendors want processor performance to drive customer purchase decisions.

Hardware manufacturers used to entice new customers with low cost machines, containing minimal memory. Once a customer started to use their shiny new computer, they found that it did save them lots of time and money, but also they needed more memory (which could only be brought from the manufacturer and was not cheap).

The plot below shows the prices IBM charged for System 360s, in 1966. Anti-trust investigations uncover all kinds of interesting data, like selling low-spec equipment at a loss to entice customers and make life difficult for competitors (code+data for all plots).

Profit margin on IBM 360s sold with various memory sizes

The plot below (data from the 19 Aug 1985 issue of ComputerWorld) shows how the price of computers increased as the minimum about of memory they supported increased.

Yes, in 1985 top end computers came with over 50M of memory; but most customers thought themselves lucky if they had a few megabytes.

If the processor is slow, it just takes longer for programs to run. If the computer does not have enough memory, programs cannot run. For most applications memory requirements are addressed first, followed by processor performance; memory requirements is the number one issue. The optimizations that commercial compilers could perform were limited by the memory capacity of developer machines.

List price of computers, in 1985, supporting the given minimum amount of  memory

Intel’s main line of business used to be selling memory chips, but these chips became commodity items as more companies entered the market; Intel bet the farm on selling processors and the rest is history. As a seller of a unique product it was/is in Intel’s interest to spend lots of money on marketing the benefits of processor performance; sellers of commodity items (such as memory chips) don’t have nearly as much to gain from generic product marketing, because customers may choose to buy from other sellers (in such markets sellers have to concentrate on marketing themselves).

Memory capacity/speed and cpu speed are two aspects of system performance; they need to be balanced to meet customer drive application requirements. The plot below shows the SPEC cpu integer performance of 4,332 systems running at various clock rates; the colors denote the different peak memory transfer rates of the memory chips in these systems (code+data).

SPEC cpu integer performance vs. cpu clock rate

These days (and perhaps in the past, I don’t have any data), memory performance is a much better predictor of system performance, but vendors don’t have an incentive to market this fact.

EDG and Github are both logical purchases for Microsoft

June 2, 2018 No comments

It looks like my prediction that Microsoft buys Github may be about to come true.

Microsoft has been sluggish in integrating their LinkedIn purchase into their identity management system. Lots of sites have verify identity using Github options (or at least the kind of sites I visit do), so perhaps LinkedIn identity will be trialed via Github.

A Github purchase will also allow Microsoft to directly connect lots of developers to Azure. Being able to easily build and execute Github code on Azure is the bait, customer data is where the money is; making Github more data friendly is an obvious first priority for new owners.

Who else should Microsoft buy? As a protective move, I think they should snap up Edison Design Group (EDG) before somebody else does. Readers outside of the compiler/static analysis/C++ standards world are unlikely to have heard of EDG. They sell C/C++ front ends (plus other languages) that support all the historical features/warts supported by other C/C++ compilers. The features only found in Microsoft’s compilers is what make it very costly/time-consuming for many companies to port their applications to other platforms; developer use of Microsoft compiler dependent features is a moat that makes it difficult for many companies to leave the Microsoft ecosystem. EDG have been in the business a long time and have built up an extensive knowledge of vendor specific compiler features; the kind of knowledge that can only be obtained by having customers tell you what language constructs they are using that your current product does not handle (and what those constructs actually mean).

What would happen if a very large company bought EDG, and open sourced its code (to make it easier for Windows developers to switch platforms, not to make any money off compiler related tools)? Somebody would have to bolt on a back-end, to generate code; but that would not be hard (EDG have designed their product to make this easy). A freely available compiler, supporting all/most of the foibles of the Microsoft C++ compiler, would tempt many Windows only developers to give it a go. A free compiler removes management from the loop, developers can try things out as a side project, without having to get management approval to spend money on a compiler (from practical experience I know how hard it is to sell compatible compiler products, i.e., there is no real money to be made by anybody doing this commercially).

Is this risk, to Microsoft, really worth the (relatively) low cost of buying EDG? The EDG guys are not getting any younger, why wouldn’t they be willing sell?

Categories: Uncategorized Tags: , , ,