First language taught to undergraduates in the 1990s
The average new graduate is likely to do more programming during the first month of a software engineering job, than they did during a year as an undergraduate. Programming courses for undergraduates is really about filtering out those who cannot code.
Long, long ago, when I had some connection to undergraduate hiring, around 70-80% of those interviewed for a programming job could not write a simple 10-20 line program; I’m told that this is still true today. Fluency in any language (computer or human) takes practice, and the typical undergraduate gets very little practice (there is no reason why they should, there are lots of activities on offer to students and programming fluency is not needed to get a degree).
There is lots of academic discussion around which language students should learn first, and what languages they should be exposed to. I have always been baffled by the idea that there was much to be gained by spending time teaching students multiple languages, when most of them barely grasp the primary course language. When I was at school the idea behind the trendy new maths curriculum was to teach concepts, rather than rote learning (such as algebra; yes, rote learning of the rules of algebra); the concept of number-base was considered to be a worthwhile concept and us kids were taught this concept by having the class convert values back and forth, such as base-10 numbers to base-5 (base-2 was rarely used in examples). Those of us who were good at maths instantly figured it out, while everybody else was completely confused (including some teachers).
My view is that there is no major teaching/learning impact on the choice of first language; it is all about academic fashion and marketing to students. Those who have the ability to program will just pick it up, and everybody else will flounder and do their best to stay away from it.
Richard Reid was interested in knowing which languages were being used to teach introductory programming to computer science and information systems majors. Starting in 1992, he contacted universities roughly twice a year, asking about the language(s) used to teach introductory programming. The Reid list (as it became known), was regularly updated until Reid retired in 1999 (the average number of universities included in the list was over 400); one of Reid’s ex-students, Frances VanScoy, took over until 2006.
The plot below is from 1992 to 2002, and shows languages in the top with more than 3% usage in any year (code+data):
Looking at the list again reminded me how widespread Pascal was as a teaching language. Modula-2 was the language that Niklaus Wirth designed as the successor of Pascal, and Ada was intended to be the grown up Pascal.
While there is plenty of discussion about which language to teach first, doing this teaching is a low status activity (there is more fun to be had with the material taught to the final year students). One consequence is lack of any real incentive for spending time changing the course (e.g., using a new language). The Open University continued teaching Pascal for years, because material had been printed and had to be used up.
C++ took a while to take-off because of its association with C (which was very out of fashion in academia), and Java was still too new to risk exposing to impressionable first-years.
A count of the total number of languages listed, between 1992 and 2002, contains a few that might not be familiar to readers.
Ada Ada/Pascal Beta Blue C 1087 1 10 3 667 C/Java C/Scheme C++ C++/Pascal Eiffel 1 1 910 1 29 Fortran Haskell HyperTalk ISETL ISETL/C 133 12 2 30 1 Java Java/Haskell Miranda ML ML/Java 107 1 48 16 1 Modula-2 Modula-3 Oberon Oberon-2 ObjPascal 727 24 26 7 22 Orwell Pascal Pascal/C Prolog Scheme 12 2269 1 12 752 Scheme/ML Scheme/Turing Simula Smalltalk SML 1 1 14 33 88 Turing Visual-Basic 71 3 |
I had never heard of Orwell, a vanity language foisted on Oxford Mathematics and Computation students. It used to be common for someone in computing departments to foist their vanity language on students; it enabled them to claim the language was being used and stoked their ego. Is there some law that enables students to sue for damages?
The 1990s was still in the shadow of the 1980s fashion for functional programming (which came back into fashion a few years ago). Miranda was an attempt to commercialize a functional language compiler, with Haskell being an open source reaction.
I was surprised that Turing was so widely taught. More to do with the stature of where it came from (university of Toronto), than anything else.
Fortran was my first language, and is still widely used where high performance floating-point is required.
ISETL is a very interesting language from the 1960s that never really attracted much attention outside of New York. I suspect that Blue is BlueJ, a Java IDE targeting novices.
Undergraduates and learning to program
I last looked at the research on teaching programming around 10 years ago and I have been catching up with what has been going on; in brief: same old, same old. One of the best papers on the subject is still: Language-independent conceptual “Bugs”
The research activity is still focused on making the tools and language ‘better’. There is a defining silence on the possibility that those doing the teaching could not teach their way out of a paper bag. Nobody is brave enough to suggest that teacher training might be a worthwhile investment, or that lectures oriented to what is useful (rather than what the lecturer finds interesting) would be appreciated by students.
I have always thought that researching the teaching of programming had no practical purpose, other than possibly helping universities increase the number of students graduating with computing degrees (some universities are solving the problem students have with programming by offering degrees that don’t involve being able to program). I still think that teaching programming to school children is at best a waste of time.
My experience with students learning to program is from a very long time ago. The process involved listening to confusing and disjoint lectures, reading books and figuring out what worked by trial and error. Students were not taught to program, they got thrown in at the deep and were expected to survive. Anybody who could handle this stood some chance of being able to handle developing software in the ‘real world’; universities were (accidentally) graduating people with the skills industry needed. However, these days universities are supposed to be customer focused, what industry needs is irrelevant (my experience of sitting on departmental industry panels is that the head of department tells us what they are thinking of doing {i.e., new courses for which there will be lots of paying students} and we try to talk him/her out of the sillier ideas); too many fee paying students find programming too hard, let’s offer computing degrees that don’t require any programming has been the only workable solution to-date.
Would you hire a recent graduate, for a development role, who had trouble figuring out how to fix syntax errors in their code? Surely, the minimum requirement is somebody who gets some pleasure from coding, even if they don’t want to spend lots of time doing it.
There is a shortage of software developers and flying turkeys are still with us.
Teach children planning and problem solving not programming
When I first heard that children in secondary education (11-16 year olds) here in the UK were to be taught programming I thought it was another example of a poorly thought through fad ruining our education system. Schools already have enough trouble finding goos maths and science teachers, and the average school leavers knowledge of these subjects is not that great, now resources and time are being diverted to a specialist subject for which it is hard to find good teachers. After talking to a teacher about his experience teaching Scratch to 11-13 year olds I realised he was not teaching programming but teaching how to think through problems, breaking them down into subcomponents and cover all possibilities; a very worthwhile subject to teach.
As I see it the ‘writing code’ subject needs to be positioned as the teaching of planning and problem solving skills (ppss, p2s2, a suitable acronym is needed) rather than programming. Based on a few short conversations with those involved in teaching, the following are a few points I would make:
- Stay with one language (Scratch looks excellent).
- The more practice students get with a language the more fluent they become, giving them more time to spend solving the problem rather than figuring out how to use the language.
- Switching to a more ‘serious’ language because it is similar to what professional programmers use is a failure to understand the purpose of what is being taught and a misunderstanding of why professionals still use ‘text’ based languages (because computer input has historically been via a keyboard and not a touch sensitive screen; I expect professional programmers will slowly migrate over to touch screen programming languages).
- Give students large problems to solve (large as in requiring lots of code). Small programs are easy to hold in your head, where the size of small depends on intellectual capacity; the small program level of coding is all about logic. Large programs cannot be held in the head and this level of coding is all about structure and narrative (there are people who can hold very large programs in their head and never learn the importance of breaking things down so others can understand them), logic does not really appear at this level. Large problems can be revisited six months later; there is no better way of teaching the importance of making things easy for others to understand than getting a student to modify one of their own programs a long time after they originally wrote it (I’m sure many will start out denying ever having written the horrible code handed back to them).
- Problems should not be algorithms. Yes, technically all programs are algorithms but most are not mathematical algorithms in the sense that, say, sorting and searching are, real life problems are messy things that involve lots of simple checks for various conditions and ad-hoc approaches to solving a problem. Teachers should resist mapping computing problems to the Scratch domain, e.g., tree walking algorithms mapped to walking the branches of a graphical tree or visiting all parts of a maze.
Recommendations for teachers of programming
The software developers I deal with usually have at least 3 or more years professional experience in industry (I have not taught a beginners programming class in over 25 years) and these recommendations are based on what I tell these people. I like to think that they are applicable to teaching those with a lot less experience.
First. Application domain expertise generally has greater value than programming expertise. That is, an investment of time in learning the application domain will yield a greater return on investment that learning more programming techniques.
Implications:
Second. Computer time is cheap, people time is expensive.
Implications:
Third. Most software is written to solve an immediate problem, used a few times, and then forgotten about (I know of software projects costing in the millions where the code was never used; my own contribution to never used code is somewhat smaller, but still much larger than I would have liked). The point is that writing software involves a cost/benefit trade-off, how much should I invest in making code maintainable given the risk that the benefits from this investment may not be recouped.
Implications:
Fourth. Don’t fool yourself that you are teaching programming; you probably just give a lecture or two and expect students to pick up the details from one of the assigned course books.
Implications:
Fifth. Coding style does exist and can have an effect on the cost of writing and maintaining code as well as how well a compiler can optimize it. These costs and benefits vary with the context in which the code was created and used. A good programmer will adopt a coding style appropriate to the context, just like an actor plays a role with the appropriate characterization (eg, comedy, thriller, suspense). It takes more experience than most undergraduate have to be able to properly discern what style is being used, let alone be capable of changing their own style.
Implications:
Recent Comments