Experimental Psychology by Robert S. Woodworth
I have just discovered “Experimental Psychology” by Robert S. Woodworth; first published in 1938, I have a reprinted in Great Britain copy from 1951. The Internet Archive has a copy of the 1954 revised edition; it’s a very useful pdf, but it does not have the atmospheric musty smell of an old book.
The Archives of Psychology was edited by Woodworth and contain reports of what look like ground breaking studies done in the 1930s.
The book is surprisingly modern, in that the topics covered are all of active interest today, in fields related to cognitive psychology. There are lots of experimental results (which always biases me towards really liking a book) and the coverage is extensive.
The history of cognitive psychology, as I understood it until this week, was early researchers asking questions, doing introspection and sometimes running experiments in the late 1800s and early 1900s (e.g., Wundt and Ebbinghaus), behaviorism dominants the field, behaviorism is eviscerated by Chomsky in the 1960s and cognitive psychology as we know it today takes off.
Now I know that lots of interesting and relevant experiments were being done in the 1920s and 1930s.
What is missing from this book? The most obvious omission is equations; lots of data points plotted on graph paper, but no attempt to fit an equation to anything, e.g., an exponential curve to the rate of learning.
A more subtle omission is the world view; digital computers had not been invented yet and Shannon’s information theory was almost 20 years in the future. Researchers tend to be heavily influenced by the tools they use and the zeitgeist. Computers as calculators and information processors could not be used as the basis for models of the human mind; they had not been invented yet.
Replication: not always worth the effort
Replication is the means by which mistakes get corrected in science. A researcher does an experiment and gets a particular result, but unknown to them one or more unmeasured factors (or just chance) had a significant impact. Another researcher does the same experiment and fails to get the same results, and eventually many experiments later people have figured out what is going on and what the actual answer is.
In practice replication has become a low status activity, journals want to publish papers containing new results, not papers backing up or refuting the results of previously published papers. The dearth of replication has led to questions being raised about large swathes of published results. Most journals only published papers that contain positive results, i.e., something was shown to some level of statistical significance; only publishing positive results produces publication bias (there have been calls for journals that publishes negative results).
Sometimes, repeating an experiment does not seem worth the effort. One such example is: An Explicit Strategy to Scaffold Novice Program Tracing. It looks like the authors ran a proper experiment and did everything they are supposed to do; but, I think the reason that got a positive result was luck.
The experiment involved 24 subjects and these were randomly assigned to one of two groups. Looking at the results (figures 4 and 5), it appears that two of the subjects had much lower ability that the other subjects (the authors did discuss the performance of these two subjects). Both of these subjects were assigned to the control group (there is a 25% chance of this happening, but nobody knew what the situation was until the experiment was run), pulling down the average of the control, making the other (strategy) group appear to show an improvement (i.e., the teaching strategy improved student performance).
Had one, or both, low performers been assigned to the other (strategy) group, no experimental effect would have shown up in the results, significantly reducing the probability that the paper would have been accepted for publication.
Why did the authors submit the paper for publication? Well, academic performance is based on papers published (quality of journal they appear in, number of citations, etc), a positive result is reason enough to submit for publication. The researchers did what they have been incentivized to do.
I hope the authors of the paper continue with their experiments. Life is full of chance effects and the only way to get a solid result is to keep on trying.
Experimental method for measuring benefits of identifier naming
I was recently came across a very interesting experiment in Eran Avidan’s Master’s thesis. Regular readers will know of my interest in identifiers; while everybody agrees that identifier names have a significant impact on the effort needed to understand code, reliably measuring this impact has proven to be very difficult.
The experimental method looked like it would have some impact on subject performance, but I was not expecting a huge impact. Avidan’s advisor was Dror Feitelson, who kindly provided the experimental data, answered my questions and provided useful background information (Dror is also very interested in empirical work and provides a pdf of his book+data on workload modeling).
Avidan’s asked subjects to figure out what a particular method did, timing how long it took for them to work this out. In the control condition a subject saw the original method and in the experimental condition the method name was replaced by local and parameter names were replaced by single letter identifiers; in all cases the method name was replaced by xxx
andxxx
. The hypothesis was that subjects would take longer for methods modified to use ‘random’ identifier names.
A wonderfully simple idea that does not involve a lot of experimental overhead and ought to be runnable under a wide variety of conditions, plus the difference in performance is very noticeable.
The think aloud protocol was used, i.e., subjects were asked to speak their thoughts as they processed the code. Having to do this will slow people down, but has the advantage of helping to ensure that a subject really does understand the code. An overall slower response time is not important because we are interested in differences in performance.
Each of the nine subjects sequentially processed six methods, with the methods randomly assigned as controls or experimental treatments (of which there were two, locals first and parameters first).
The procedure, when a subject saw a modified method was as follows: the subject was asked to explain the method’s purpose, once an answer was given (or 10 mins had elapsed) either the local or parameter names were revealed and the subject had to again explain the method’s purpose, and when an answer was given the names of both locals and parameters was revealed and a final answer recorded. The time taken for the subject to give a correct answer was recorded.
The summary
output of a model fitted using a mixed-effects model is at the end of this post (code+data; original experimental materials). There are only enough measurements to have subject
as a random effect on the treatment
; no order of presentation data is available to look for learning effects.
Subjects took longer for modified methods. When parameters were revealed first, subjects were 268 seconds slower (on average), and when locals were revealed first 342 seconds slower (the standard deviation of the between subject differences was 187 and 253 seconds, respectively; less than the treatment effect, surprising, perhaps a consequence of information being progressively revealed helping the slower performers).
Why is subject performance less slow when parameter names are revealed first? My thoughts: parameter names (if well-chosen) provide clues about what incoming values represent, useful information for figuring out what a method does. Locals are somewhat self-referential in that they hold local information, often derived from parameters as initial values.
What other factors could impact subject performance?
The number of occurrences of each name in the body of the method provides an opportunity to deduce information; so I think time to figure out what the method does should less when there are many uses of locals/parameters, compared to when there are few.
The ability of subjects to recognize what the code does is also important, i.e., subject code reading experience.
There are lots of interesting possibilities that can be investigated using this low cost technique.
Linear mixed model fit by REML ['lmerMod'] Formula: response ~ func + treatment + (treatment | subject) Data: idxx REML criterion at convergence: 537.8 Scaled residuals: Min 1Q Median 3Q Max -1.34985 -0.56113 -0.05058 0.60747 2.15960 Random effects: Groups Name Variance Std.Dev. Corr subject (Intercept) 38748 196.8 treatmentlocals first 64163 253.3 -0.96 treatmentparameters first 34810 186.6 -1.00 0.95 Residual 43187 207.8 Number of obs: 46, groups: subject, 9 Fixed effects: Estimate Std. Error t value (Intercept) 799.0 110.2 7.248 funcindexOfAny -254.9 126.7 -2.011 funcrepeat -560.1 135.6 -4.132 funcreplaceChars -397.6 126.6 -3.140 funcreverse -466.7 123.5 -3.779 funcsubstringBetween -145.8 125.8 -1.159 treatmentlocals first 342.5 124.8 2.745 treatmentparameters first 267.8 106.0 2.525 Correlation of Fixed Effects: (Intr) fncnOA fncrpt fncrpC fncrvr fncsbB trtmntlf fncndxOfAny -0.524 funcrepeat -0.490 0.613 fncrplcChrs -0.526 0.657 0.620 funcreverse -0.510 0.651 0.638 0.656 fncsbstrngB -0.523 0.655 0.607 0.655 0.648 trtmntlclsf -0.505 -0.167 -0.182 -0.160 -0.212 -0.128 trtmntprmtf -0.495 -0.184 -0.162 -0.184 -0.228 -0.213 0.673 |
Experiment, replicate, replicate, replicate,…
Popular science writing often talks about how one experiment proved this-or-that theory or disproved ‘existing theories’. In practice, it takes a lot more than one experiment before people are willing to accept a new theory or drop an existing theory. Many, many experiments are involved, but things need to be simplified for a popular audience and so one experiment emerges to represent the pivotal moment.
The idea of one experiment being enough to validate a theory has seeped into the world view of software engineering (and perhaps other domains as well). This thinking is evident in articles where one experiment is cited as proof for this-or-that and I am regularly asked what recommendations can be extracted from the results discussed in my empirical software book (which contains very few replications, because they rarely exist). This is a very wrong.
A statistically significant experimental result is a positive signal that the measured behavior might be real. The space of possible experiments is vast and any signal that narrows the search space is very welcome. Multiple replication, by others and with variations on the experimental conditions (to gain an understanding of limits/boundaries), are needed first to provide confidence the behavior is repeatable and then to provide data for building practical models.
Psychology is currently going through a replication crisis. The incentive structure for researchers is not to replicate and for journals not to publish replications. The Reproducibility Project is doing some amazing work.
Software engineering has had an experiment problem for decades (the problem is lack of experiments), but this is slowly starting to change. A replication problem is in the future.
Single experiments do have uses other than helping to build a case for a theory. They can be useful in ruling out proposed theories; results that are very different from those predicted can require ideas to be substantially modified or thrown away.
In the short term (i.e., at least the next five years) the benefit of experiments is in ruling out possibilities, as well as providing general pointers to the possible shape of things. Theories backed by substantial replications are many years away.
Ability to remember code improves with experience
What mental abilities separate an expert from a beginner?
In the 1940s de Groot studied expertise in Chess. Players were shown a chess board containing various pieces and then asked to recall the locations of the pieces. When the location of the chess pieces was consistent with a likely game, experts significantly outperformed beginners in correct recall of piece location, but when the pieces were placed at random there was little difference in recall performance between experts and beginners. Also players having the rank of Master were able to reconstruct the positions almost perfectly after viewing the board for just 5 seconds; a recall performance that dropped off sharply with chess ranking.
The interpretation of these results (which have been duplicated in other areas) is that experts have learned how to process and organize information (in their field) as chunks, allowing them to meaningfully structure and interpret board positions; beginners don’t have this ability to organize information and are forced to remember individual pieces.
In 1981 McKeithen, Reitman, Rueter and Hirtle repeated this experiment, but this time using 31 lines of code and programmers of various skill levels. Subjects were given two minutes to study 31 lines of code, followed by three minutes to write (on a blank sheet of paper) all the code they could recall; this process was repeated five times (for the same code). The plot below shows the number of lines correctly recalled by experts (2,000+ hours programming experience), intermediates (just finished programming course) and beginners (just started programming course), left performance using ‘normal’ code and right is performance viewing code created by randomizing lines from ‘normal’ code; only the mean values in each category are available (code+data):
Experts start off remembering more than beginners and their performance improves faster with practice.
Compared to the Power law of practice (where experts should not get a lot better, but beginners should improve a lot), this technique is a much less time consuming way of telling if somebody is an expert or beginner; it also has the advantage of not requiring any application domain knowledge.
If you have 30 minutes to spare, why not test your ‘expertise’ on this code (the .c file, not the .R file that plotted the figure above). It’s 40 odd lines of C from the Linux kernel. I picked C because people who know C++, Java, PHP, etc should have no trouble using existing skills to remember it. What to do:
- You need five blank sheets of paper, a pen, a timer and a way of viewing/not viewing the code,
- view the code for 2 minutes,
- spend 3 minutes writing down what you remember on a clean sheet of paper,
- repeat until done 5 times.
Count how many lines you correctly wrote down for each iteration (let’s not get too fussed about exact indentation when comparing) and send these counts to me (derek at the primary domain used for this blog), plus some basic information on your experience (say years coding in language X, years in Y). It’s anonymous, so don’t include any identifying information.
I will wait a few weeks and then write up the data o this blog, as well as sharing the data.
Update: The first bug in the experiment has been reported. It takes longer than 3 minutes to write out all the code. Options are to stick with the 3 minutes or to spend more time writing. I will leave the choice up to you. In a test situation, maximum time is likely to be fixed, but if you have the time and want to find out how much you remember, go for it.
Power law of practice in software implementation
People get better with practice. The power law of practice specifies , where: is the response time, the amount of practice and , and are constants. However, sometimes an exponential equation is a better fit for to the data: . There are theoretical reasons for liking a power law (e.g., it can be derived from the chunking of information), but it is difficult to argue with the exponential fitting so much data better than a power law.
The plot below, from a study by Alteneder, shows the time taken to solve the same jig-saw puzzle, for 35 trials (red); followed by a two week pause and another 35 trials (in blue; if anybody else wants to try this, a dedicated weekend should be long enough to complete over 20 trials). The lines are fitted power law and exponential equations (code+data). Can you tell which is which?
To find out if the same behavior occurs with software we need data on developers implementing the identical applications multiple times. I know of two experiments where the same application has been implemented multiple times by the same people, and where the data is available. Please let me know if you know of any others.
Zislis timed himself implementing 12 algorithms from the CACM collection in each of three languages, iterating four times (my copy came from the Purdue library, which as I write this is not listing the report). The large number of different programs implemented, coupled with the use of multiple languages, makes it difficult to separate out learning effects.
Lui and Chan ran an experiment where 24 developers (8 pairs {pair programming} and 8 singles) implemented the same application four times. The plot below shows the time taken to complete each implementation (singles top, pairs bottom, with black cross showing predictions made by a power law fit).
Different subjects start the experiment with different amounts of ability and past experience. Before starting, subjects took a multiple choice test of their knowledge. If we take the results of this test as a proxy for the ability/knowledge at the start of the experiment, then the power law equation becomes (a similar modification can be made to the exponential equation):
That is, the test score is treated as equivalent to performing some number of rounds of implementation). A power law is a better fit than exponential to this data (code+data); the fit captures the general shape, but misses lots of what look like important details.
The experiment was run over successive weekends. So there was opportunity for some forgetting to occur during the week days, and the amount forgotten will vary between people. It is easy to think of other issues that could have influenced subject performance.
This experiment must rank as one of the most interesting software engineering experiments performed to date.
Least Recently Used: The experiment that made its reputation
Today we all know that least recently used is the best page replacement algorithm for virtual memory systems (actually paging is complicated in today’s intertwined computing world).
Virtual memory was invented in 1959 and researchers spent the 1960s trying to figure out the best page replacement algorithm.
Programs were believed to spend most of their time in loops and this formed the basis for the rationale for why FIFO, First In First Out, was the best page replacement algorithm (widely used at the time).
Least recently used, LRU, was on people’s radar as a possible technique and was mathematically analysed, along with various other techniques. The optimal technique was known and given the name OPT; a beautifully simple technique with one implementation drawback, it required knowledge of future memory usage behavior (needless to say some researchers set to work trying to predict future memory usage, so this algorithm could be used).
An experiment by Tsao, Comeau and Margolin, published in 1972, showed that LRU outperformed FIFO and random replacement. The rest, as they say, is history; in this case almost completely forgotten history.
The paper “A multifactor paging experiment: I. The experiment and conclusions” was published as one of a collection of papers in “Statistical Computer Performance Evaluation” edited by Freiberger. A second paper by two of the authors in the same book outlines the statistical methodology. Appearing in a book means this paper can be very hard to track down. I recently bought a copy of the book on Amazon for one penny (the postage was £2.80).
The paper contains a copy of the experimental results and below are the page swap numbers:
loadseq group group group freq freq freq alpha alpha alpha Pages 24 20 16 24 20 16 24 20 16 LRU S 32 48 538 52 244 998 59 536 1348 LRU M 53 81 1901 112 776 3621 121 1879 4639 LRU L 142 197 5689 262 2625 10012 980 5698 12880 FIFO S 49 67 789 79 390 1373 85 814 1693 FIFO M 100 134 3152 164 1255 4912 206 3394 5838 FIFO L 233 350 9100 458 3688 13531 1633 10022 17117 RAND S 62 100 1103 111 480 1782 111 839 2190 RAND M 96 245 3807 237 1502 6007 286 3092 7654 RAND L 265 2012 12429 517 4870 18602 1728 8834 23134 |
Three Fortran programs were used, Small (55 statements), Medium (215 statements) and Large (595 statements). These programs were loaded by group (sequences of frequently called subroutines grouped together), freq (subrotines causing the most page swaps were grouped together), alpha (subroutines were grouped alphabetically).
The system was configured with either 24, 20 or 16 pages of 4,096 bytes; it had a total of 256K of memory (a lot of memory back then). The experiment consumed 60 cpu hours.
Looking at the table, it is easy to see that LRU has the best performance. In places random replacement beats FIFO. A regression model (code and data) puts numbers on the performance advantage.
The paper says that the only interaction was between memory size (i.e., number of pages) and how the programs were loaded. I found pairwise interaction between all variables, but then I am using a technique that was being invented as this paper was being published (see code for details).
Number of page swaps was one of three techniques used for measuring performed. The other two were activity count (average number of pages in main memory referenced at least once between page swaps) and inactivity count (average time, measured in page swaps, of a page in secondary storage after it had been swapped out). See data for details.
I vividly remember dropping in on a randomly chosen lecture in computer science in the mid-70s (I studied physics and electronics), the subject was page selection algorithms and there were probably only a dozen people in the room (physics and electronics sometimes had close to 100). The lecturer regaled those present with how surprising it was that LRU was the best and somebody had actually done an experiment showing this. Having a physics/electronics background, the experimental approach to settling questions was second nature to me.
The Empirical Investigation of Perspective-Based Reading: Data analysis
Questions about the best way to perform code reviews go back almost to the start of software development. The perspective-based reading approach focuses reviewers’ attention on the needs of the users of the document/code, e.g., tester, user, designer, etc, and “The Empirical Investigation of Perspective-Based Reading” is probably the most widely cited paper on the subject. This paper is so widely cited I decided it was worth taking the time to email the authors of a 20 year old paper asking if the original data was available and could I have a copy to use in a book I am working on. Filippo Lanubile’s reply included two files containing the data (original files, converted files+code)!
How do you compare the performance of different approaches to finding problems in documents/code? Start with experienced subjects, to minimize learning effects during the experiment (doing this also makes any interesting results an easier sell; professional developers know how unrealistic student performance tends to be); the performance of subjects using what they know has to be measured first, learning another technique first would contaminate any subsequent performance measurements.
In this study subjects reviewed four documents over two days; the documents were two NASA specifications and two generic domain specifications (bank ATM and parking garage); the documents were seeded with faults. Subjects were split into two groups and read documents in the following sequences:
Group 1 Group 2 Day 1 NASA A NASA B ATM PG Day 2 Perspective-based reading training PG ATM NASA B NASA A |
The data contains repeated measurements of the same subject (i.e., their performance on different documents using one of two techniques), so mixed-model regression has to be used to build a model.
I built two models, one for number of faults detected and the another for the number of false positive faults flagged (i.e., something that was not a fault flagged as a fault).
The two significant predictors of percentage of known faults detected were kind of document (higher percentage detected in the NASA documents) and order of document processing on each day (higher percentage reported on the first document; switching document kind ordering across groups would have enabled more detail to be teased out).
The false positive model was more complicated, predictors included number of pages reviewed (i.e., more pages reviewed more false positive reports; no surprise here), perspective-based reading technique used (this also included an interaction with number of years of experience) and kind of document.
So use of perspective-based reading did not make a noticeable difference (the false positive impact was in amongst other factors). Possible reasons that come to mind include subjects not being given enough time to switch reading techniques (people need time to change established habits) and some of the other reading techniques used may have been better/worse than perspective-based reading and overall averaged out to no difference.
This paper is worth reading for the discussion of the issues involved in trying to control factors that may have a noticeable impact on experimental results and the practical issues of using professional developers as subjects (the authors clearly put a lot of effort into doing things right).
Please let me know if you build any interesting model using the data.
Joke: Student subjects in software engineering experiments
Most academic experiments in software engineering use the students available to the researcher as subjects, often classifying first year as novices and final year or postgrads as experts. If professional developers (i.e., non-student) subjects are used the paper will trumpet this fact; talk of comparing novices and experts is the give-away for an all undergraduate subject line-up. Most computing academics don’t write much software, so they are blissfully ignorant that they and their students are novices compared to a professional developer with a couple of years experience.
Results from well designed and executed experiments can reasonably be extended to cover people who share the skills used by subjects in the experiment. Becoming an expert programmer takes several years of continuous (i.e., several hours a day) practice. Using real experts in a programming experiment means that no measurable change in programming skill will occur during the experiment, while novices are likely to noticeably learn during the experiment and thus introduce unwanted sources of variation into the results. Of course novices will also take longer and are likely to have patterns of behavior that are not yet been selectively tuned to something that works in practice.
There is also an elephant in the room of student subjects in software engineering; some of the students are never going to get jobs in software engineering because they are completely useless at it. How does a student manage to get a degree in a software related subject and be unemployable as a software engineer? Money. Students are attracted by the money and lifestyle they hear a job in software engineering will offer and many Universities are happy to treat the computing department as a cash cow by offering courses that allow students to concentrate on “strategic” subjects and avoid having to get involved in nitty gritty details like programming. The University is probably defrauding some students by accepting them for a software related degree course.
My experience is that professional developers are happy to donate some time to taking part in a software engineering experiment. They just have to be asked, of course I do have the advantage of actually knowing some professional software developers.
Evidence for the benefits of strong typing, where is it?
It is often claimed that writing software using a strongly typed programming language bestows worthwhile benefits. Those making the claims can sometimes be rather vague about exactly what the benefits are, while at other times appear willing to claim almost any benefit. What does the empirical evidence have to say (let’s ignore the what languages are strongly typed elephant in the room)?
Until recently there had been two empirical studies (plus a couple of language comparison experiments; one of the better ones involves the researcher timing himself implementing various algorithms in various languages; Zislis “An Experiment in Algorithm Implementation”), while in the last few years a group has been experimenting away in Germany (three’ish published data sets).
Measuring changes in developer performance caused by the use of different programming languages is very hard, some of the problems include:
- every person is different: a way needs to be found to take account of differences in subject ability/knowledge/characteristics,
- every problem is different: it may be easier to write a program to solve a problem using language X than using language Y,
- it is difficult to obtain experimental subjects.
The experimental procedure adopted by all the experiments discussed here is to:
- select two different languages or the same language modified to not support some type constructs,
- get students (mostly upper-undergraduates+graduates) to volunteer as experimental subjects,
- have each subject use one language to solve a problem and then use the other language to solve the same problem. Each subject is randomly assigned to a group using a given language order (the experiments start out with an equal number of subjects in each group, but not all subjects complete every problem),
- in some cases the previous step is repeated for new problems.
Having subjects solve the same problem twice creates the opportunity for learning to occur during the implementation of the first program and for this learning to improve performance during the second implementation. The experimental procedures employed generate information that can be used during the analysis of the data (in my case using a mixed-model in R; download code and all data) to factor this ordering effect into the created model.
So what are the results? In chronological order we have (if you know of anymore published work please tell me):
- Gannon “An Experimental Evaluation of Data Type Conversions”: Implemented compilers for two simple languages (think BCPL and BCPL+a string type and simple structures; by today’s standards one language is not quiet as weakly typed as the other). One problem had to be solved and this was designed to require the use of features available in both languages, e.g., a string oriented problem (final programs were between 50-300 lines). The result data included number of errors during development and number of runs needed to create a working program (this all happened in 1977, well before the era of personal computers, when batch processing was king).
There was a small language difference in number of errors/batch submissions; the difference was about half the size of that due to the order in which languages were used by subjects, both of which were small in comparison to the variation due to subject performance differences. While the language effect was small, it exists. To what extent Can the difference be said to be due to stronger typing rather than only one language having built in support for a string type? Who knows, no more experiments like this were performed for 20 years
- Prechelt & Tichy A Controlled Experiment to Assess the Benefits of Procedure Argument Type Checking: Used two C compilers, one K&R C (i.e., no argument checking of function calls) and the other ANSI C, with subjects solving one problem using both compilers; available output data was time taken by subjects to solve the problem.
Using the no argument checking compiler slowed implementation time by around 10%, about five times smaller than the variation in subject performance (there was an ordering effect of around 30%).
- Mayer, Kleinschmager & Hanenberg: Two experiments used different languages (Java and Groovy) and multiple problems; result data was time for subjects to complete the task (Do Static Type Systems Improve the Maintainability of Software Systems? An Empirical Study and An Empirical Study of the Influence of Static Type Systems on the Usability of Undocumented Software). No significant difference due to just language (surprisingly) but differences due to language order, but big differences due to language/problem interaction with some problems solved more quickly in Java and other more quickly in Groovy. Again large variation due to subject performance.
Another experiment used a single language (Java) and multiple problems involving making use of either Java’s generic types or non-generic types (“Do Developers Benefit from Generic Types?”). Again the only significant language difference effects occurred through interaction with other variables in the experiment (e.g., the problem or the language ordering) and again there were large variations in subject performance.
In summary, when a language typing/feature effect has been found its contribution to overall developer performance has been small.
I think some reasons that the effects of typing have been so small, or non-existent, include (I should declare my belief that strong typing is useful):
- the use of students as subjects. Most students have very little programming experience relative to professional developers (i.e., under 100 hours vs. thousands of hours). I can easily imagine many student subjects often finding the warnings produced by the type system more confusing than helpful. More experienced developers are in a position to make full use of what a type system offers, and researchers should try to use professional developers as subjects (it is not that hard to obtain such volunteers)
- the small size of the problems. Typing comes into its own when used to organize and control large amounts of code. I understand the constraints of running an experiment limit the amount of code involved.
Recent Comments