Archive

Posts Tagged ‘data analysis’

A study, a replication, and a rebuttal; SE research is starting to become serious

November 20, 2019 No comments

tldr; A paper makes various claims based on suspect data. A replication finds serious problems with the data extraction and analysis. A rebuttal paper spins the replication issues as being nothing serious, and actually validating the original results, i.e., the rebuttal is all smoke and mirrors.

When I first saw the paper: A Large-Scale Study of Programming Languages and Code Quality in Github, the pdf almost got deleted as soon as I started scanning the paper; it uses number of reported defects as a proxy for code quality. The number of reported defects in a program depends on the number of people using the program, more users will generate more defect reports. Unfortunately data on the number of people using a program is extremely hard to come by (I only know of one study that tried to estimate number of users); studies of Java have also found that around 40% of reported faults are requests for enhancement. Most fault report data is useless for the model building purposes to which it is put.

Two things caught my eye, and I did not delete the pdf. The authors have done good work in the past, and they were using a zero-truncated negative binomial distribution; I thought I was the only person using zero-truncated negative binomial distributions to analyze software engineering data. My data analysis alter-ego was intrigued.

Spending a bit more time on the paper confirmed my original view, it’s conclusions were not believable. The authors had done a lot of work, this was no paper written over a long weekend, but lots of silly mistakes had been made.

Lots of nonsense software engineering papers get published, nothing to write home about. Everybody gets writes a nonsense paper at some point in their career, hopefully they get caught by reviewers and are not published (the statistical analysis in this paper was probably above the level familiar to most software engineering reviewers). So, move along.

At the start of this year, the paper: On the Impact of Programming Languages on Code Quality: A Reproduction Study appeared, published in TOPLAS (the first was in CACM, both journals of the ACM).

This replication paper gave a detailed analysis of the mistakes in data extraction, and the sloppy data analyse performed in the original work. Large chunks of the first study were cut to pieces (finding many more issues than I did, but not pointing out the missing usage data). Reading this paper now, in more detail, I found it a careful, well argued, solid piece of work.

This publication is an interesting event. Replications are rare in software engineering, and this is the first time I have seen a take-down (of an empirical paper) like this published in a major journal. Ok, there have been previous published disagreements, but this is machine learning nonsense.

The Papers We Love meetup group ran a mini-workshop over the summer, and Jan Vitek gave a talk on the replication work (unfortunately a problem with the AV system means the videos are not available on the Papers We Love YouTube channel). I asked Jan why they had gone to so much trouble writing up a replication, when they had plenty of other nonsense papers to choose from. His reasoning was that the conclusions from the original work were starting to be widely cited, i.e., new, incorrect, community-wide beliefs were being created. The finding from the original paper, that has been catching on, is that programs written in some languages are more/less likely to contain defects than programs written in other languages. What I think is actually being measured is number of users of the programs written in particular languages (a factor not present in the data).

Yesterday, the paper Rebuttal to Berger et al., TOPLAS 2019 appeared, along with a Medium post by two of the original authors.

The sequence: publication, replication, rebuttal is how science is supposed to work. Scientists disagree about published work and it all gets thrashed out in a series of published papers. I’m pleased to see this is starting to happen in software engineering, it shows that researchers care and are willing to spend time analyzing each others work (rather than publishing another paper on the latest trendy topic).

From time to time I had considered writing a post about the first two articles, but an independent analysis of the data meant some serious thinking, and I was not that keen (since I did not think the data went anywhere interesting).

In the academic world, reputation and citations are the currency. When one set of academics publishes a list of mistakes, errors, oversights, blunders, etc in the published work of another set of academics, both reputation and citations are on the line.

I have not read many academic rebuttals, but one recurring pattern has been a pointed literary style. The style of this Rebuttal paper is somewhat breezy and cheerful (the odd pointed phrase pops out every now and again), attempting to wave off what the authors call general agreement with some minor differences. I have had some trouble understanding how the rebuttal points discussed are related to the problems highlighted in the replication paper. The tone of the medium post is that there is nothing to see here, let’s all move on and be friends.

An academic’s work is judged by the number of citations it has received. Citations are used to help decide whether someone should be promoted, or awarded a grant. As I write this post, Google Scholar listed 234 citations to the original paper (which is a lot, most papers have one or none). The abstract of the Rebuttal paper ends with “…and our paper is eminently citable.”

The claimed “Point-by-Point Rebuttal” takes the form of nine alleged claims made by the replication authors. In four cases the Claim paragraph ends with: “Hence the results may be wrong!”, in two cases with: “Hence, FSE14 and CACM17 can’t be right.” (these are references to the original conference and journal papers, respectively), and once with: “Thus, other problems may exist!”

The rebuttal points have a tenuous connection to the major issues raised by the replication paper, and many of them are trivial issues (compared to the real issues raised).

Summary bullet points (six of them) at the start of the Rebuttal discuss issues not covered by the rebuttal points. My favourite is the objection bullet point claiming a preference, in the replication, for the use of the Bonferroni correction rather than FDR (False Discovery Rate). The original analysis failed to use either technique, when it should have used one or the other, a serious oversight; the replication is careful and does the analysis using both.

I would be very surprised if the Rebuttal paper, in its current form, gets published in any serious journal; it’s currently on a preprint server. It is not a serious piece of work.

Somebody who has only read the Rebuttal paper would take away a strong impression that the criticisms in the replication paper were trivial, and that the paper was not a serious piece of work.

What happens next? Will the ACM appoint a committee of the great and the good to decide whether the CACM article should be retracted? We are not talking about fraud or deception, but a bunch of silly mistakes that invalidate the claimed findings. Researchers are supposed to care about the integrity of published work, but will anybody be willing to invest the effort needed to get this paper retracted? The authors will not want to give up those 234, and counting, citations.

Update

The replication authors have been quick off the mark and posted a rebuttal of the Rebuttal.

The rebuttal of the Rebuttal has been written in the style that rebuttals are supposed to be written in, i.e., a point by point analysis of the issues raised.

Now what? I have no idea.

Offer of free analysis of your software engineering data

February 13, 2019 No comments

Since the start of this year, I have been telling people that I willing to analyze their software engineering data for free, provided they are willing to make the data public; I also offer to anonymize the data for them, as part of the free service. Alternatively you could read this book, and do the analysis yourself.

What will you get out of me analyzing your data?

My aim is to find patterns of behavior that will be useful to you. What is useful to you? You have to be the judge of that. It is possible that I will not find anything useful, or perhaps any patterns at all; this does not happen very often. Over the last year I have found (what I think are useful) patterns in several hundred datasets, with one dataset that I am still scratching my head over it.

Data analysis is a two-way conversation. I find some patterns, and we chat about them, hopefully you will say one of them is useful, or point me in a related direction, or even a completely new direction; the process is iterative.

The requirement that an anonymized form of the data be made public is likely to significantly reduce the offers I receive.

There is another requirement that I don’t say much about: the data has to be interesting.

What makes software engineering data interesting, or at least interesting to me?

There has to be lots of it. How much is lots?

Well, that depends on the kind of data. Many kinds of measurements of source code are generally available by the truck load. Measurements relating to human involvement in software development are harder to come by, but becoming more common.

If somebody has a few thousand measurements of some development related software activity, I am very interested. However, depending on the topic, I might even be interested in a couple of dozen measurements.

Some measurements are very rare, and I would settle for as few as two measurements. For instance, multiple implementations of the same set of requirements provides information on system development variability; I was interested in five measurements of the lines of source in five distinct Pascal compilers for the same machine.

Effort estimation data used to be rare; published papers sometimes used to include a table containing the estimate/actual data, which was once gold-dust. These days I would probably only be interested if there were a few hundred estimates, but it would depend on what was being estimated.

If you have some software engineering data that you think I might be interested in, please email to tell me something about the data (and perhaps what you would like to know about it). I’m always open to a chat.

If we both agree that it’s worth looking at your data (I will ask you to confirm that you have the rights to make it public), then you send me the data and off we go.

Teaching basic data analysis to programmers: summer internship

January 21, 2019 No comments

Software engineering is one of the topics in this year’s summer internships being sponsored by R-Studio. The spec says: “Data Science Training for Software Engineers – Develop course materials to teach basic data analysis to programmers using software engineering problems and data sets.”

It’s good to see interest in data analysis of software engineering data start to gain traction.

What topics might basic data analysis for programmers include? I have written about statistical techniques that I think are useful in software engineering, but I don’t think this list would be regarded as basic. Techniques that are think are basic are:

  • a picture is worth a thousand words, so obviously visualization is a major topic,
  • building regression models is good for helping to understand what is going on.

Anything else? Well, I don’t know.

An alternative approach to teaching basic data analysis is to give examples of the kind of useful things it can be used to do. Software developers are fast learners, and given the motivation have the skills needed to find and learn techniques that they think are of use. In a basic course, I would put the emphasis on motivating developers to think that data analysis can help them do a better job.

I would NOT, repeat, not, include any material on machine learning. Software engineering data sets tend to be too small to obtain reliable results from machine learning, and I don’t want to encourage clueless button pushers.

What are the desirable skills in the summer intern? I would say that being able to write readable material is the most important, with statistical knowledge ranked second; the level of software engineering knowledge is unimportant. Data analysis tends to follow the same pattern whatever the subject; so it’s important to get somebody who knows about data analysis.

A social science major is the obvious demographic for this intern (they do lots of data analysis); the last people to consider are students majoring in a computing subject.

Categories: Uncategorized Tags: ,

What statistical techniques are useful for software engineering data?

August 2, 2018 No comments

What statistical techniques are of general usefulness for analyzing software engineering data?

The answer depends on the kinds of data likely to be encountered, in software engineering, and the questions likely to be asked.

When I started working on a book, aiming to cover all worthwhile publicly available software engineering data, I was hoping to refer readers to a book (or two) that they ought to read to learn the appropriate techniques. Kabacoff’s “R in Action” comes closest to the book I had in mind as a basic introduction, but there was nothing covering a wider range of topics; so I ended up writing something; I found Crawley’s “The R book”, to be the best book on the subject.

My answer to the kinds of data likely to be available was to work with all the software engineering data I could get obtain (around 600 data sets to date).

What questions should be asked about the data? My selection of questions was driven by whether the data was used in the software engineering half of the book, or the statistical analysis techniques half.

The software engineering material consists of the chapters: Introduction, Human cognitive characteristics, Cognitive capitalism, Ecosystems, Projects, Reliability and Source code. The data appeared in one of these chapters if it could be used to make (what I thought was) a practical point about the topic being discussed.

Data appeared in the statistical analysis techniques chapters, if it could be used to illustrate the technique under discussion.

What happened in practice was the software engineering material was worked on for a year or two, on realizing that bespoke statistical analysis material was needed the existing data was plundered to create the necessary chapters; after this was released, work switched back to the software engineering material (using unplundered and newly acquired data), and of course the earlier chapters plundered data from the yet to be worked on chapters.

This seems to have worked surprisingly well, at least from my perspective of keeping the production line going.

Now most if the data has been analyzed, it’s time to take a global overview and where necessary shuffle things around. I may find that everything is a complete mess; we shall see.

What techniques have I found to be useful?

The number 1, most useful data analysis technique is building a regression model. The one thing I have been consistently able to do, when analyzing other people’s data, is extract more information from it than they did (unless they also built a regression model); at times it has been embarrassing.

At number 2, is bootstrapping. Many widely used techniques only give accurate answers if the data has a normal/gaussian distribution and use of these techniques can involve a lot of arm waving involving claims about the data having a good-enough gaussian-like distribution. This arm waving was necessary before computers became available, because the practical manual techniques required a gaussian distribution. Now we have computers and techniques that don’t require any particular distribution can be used, and which in some cases are more powerful techniques than those designed for manual implementation.

Sitting here, I cannot think of a number 3; there might be one.

What techniques are not generally useful? The various tests containing some combination of the names Wilcoxon, Mann and Whitney are well past their sell-by date. Searching the source of the book I see these names still appear in one or two places; this is a hangover from the early versions from many years ago (when I was following the clueless herd) and will soon be gone.

I thought that extreme value theory might apply to some data, but have only found one data-set to which it might be applied (so not generally useful).

I spent a lot of time watching out for zero-inflated data (data containing more zero values than expected by the common probability distributions). I saw four/five papers containing plots of data that looked zero-inflated and emailed the authors asking for the data (who kindly sent it to me). None of the data turned out to be zero-inflated (I’m not sure what the authors thought about being asked for data that somebody thought was zero-inflated). This does not mean that software engineering data is not zero-inflated, only that it is not common.

My zero-inflated search was motivated by the occasional appearance of zero-truncated data (data with that does not contain zero values). Zero-truncated data occurs when counting starts at one, rather than zero (I have one data-set that is 0/1 truncated; the counting starts at 2).

I was surprised that time-series did not turn out to be widely useful.

Sometimes we are all clueless button pushers, so machine learning gets a few pages. Anybody who knows what they are doing builds regression models.

I will eventually get around to counting how many times each technique is used on the data I have (watch this blog, but don’t hold your breath).

Estimating the number of distinct faults in a program

March 18, 2018 No comments

In an earlier post I gave two reasons why most fault prediction research is a waste of time: 1) it ignores the usage (e.g., more heavily used software is likely to have more reported faults than rarely used software), and 2) the data in public bug repositories contains lots of noise (i.e., lots of cleaning needs to be done before any reliable analysis can done).

Around a year ago I found out about a third reason why most estimates of number of faults remaining are nonsense; not enough signal in the data. Date/time of first discovery of a distinct fault does not contain enough information to distinguish between possible exponential order models (technical details; practically all models are derived from the exponential family of probability distributions); controlling for usage and cleaning the data is not enough. Having spent a lot of time, over the years, collecting exactly this kind of information, I was very annoyed.

The information required, to have any chance of making a reliable prediction about the likely total number of distinct faults, is a count of all fault experiences, i.e., multiple instances of the same fault need to be recorded.

The correct techniques to use are based on work that dates back to Turing’s work breaking the Enigma codes; people have probably heard of Good-Turing smoothing, but the slightly later work of Good and Toulmin is applicable here. The person whose name appears on nearly all the major (and many minor) papers on population estimation theory (in ecology) is Anne Chao.

The Chao1 model (as it is generally known) is based on a count of the number of distinct faults that occur once and twice (the Chao2 model applies when presence/absence information is available from independent sites, e.g., individuals reporting problems during a code review). The estimated lower bound on the number of distinct items in a closed population is:

S_{est} ge S_{obs}+{n-1}/{n}{f^2_1}/{2f_2}

and its standard deviation is:

S_{sd-est}={f_1}/{f_2}k sqrt{f_2(0.5/{k}+{f_1}/{f_2} [1+0.25 {f_1}/{f_2}])}

where: S_{est} is the estimated number of distinct faults, S_{obs} the observed number of distinct faults, n the total number of faults, f_1 the number of distinct faults that occurred once, f_2 the number of distinct faults that occurred twice, k={n-1}/{n}.

A later improved model, known as iChoa1, includes counts of distinct faults occurring three and four times.

Where can clean fault experience data, where the number of inputs have been controlled, be obtained? Fuzzing has become very popular during the last few years and many of the people doing this work have kept detailed data that is sometimes available for download (other times an email is required).

Kaminsky, Cecchetti and Eddington ran a very interesting fuzzing study, where they fuzzed three versions of Microsoft Office (plus various Open Source tools) and made their data available.

The faults of interest in this study were those that caused the program to crash. The plot below (code+data) shows the expected growth in the number of previously unseen faults in Microsoft Office 2003, 2007 and 2010, along with 95% confidence intervals; the x-axis is the number of faults experienced, the y-axis the number of distinct faults.

Predicted growth of unique faults experienced in Microsoft Office

The take-away point: if you are analyzing reported faults, the information needed to build models is contained in the number of times each distinct fault occurred.

Aggregate player preference for the first 20 building created in Illyriad

June 7, 2015 2 comments

I was at the Microsoft Gaming data hackathon today. Gaming is very big business and companies rarely publish detailed game data. Through contacts one of the organizers was able to obtain two gaming datasets, both containing just under 300M of compressed of data.

Illyriad supplied a random snapshot of anonymised data on 50,000 users and Mediatonic supplied three months of player data.

Being a Microsoft event there were lots of C# developers, with data analysis people being thin on the ground. While there were plenty of gamers present I could not find any that knew the games for which we had data (domain experts are always in short supply at hackathons).

I happened to pick the Illyriad data to investigate first and stayed with it. The team sitting next to us worked on the Mediatonic data and while I got to hear about this data and kicked a few ideas around with them, I did not look at it.

The first thing to do with any dataset is to become familiar with what data it actually contains and the relationships between different items. I was working with two people new to data science who wanted to make the common beginner mistake of talking about interesting things we could do; it took a while for my message of “no point of talking about what we could do with the data until we know what data we have” to have any effect. Of course it is always worth listening to what a domain expert is interested in before looking at the data, as a source of ideas to keep in mind; it is not worth keeping in mind ideas from non-domain experts.

Quick Illyriad game overview: Players start with a settlement and construct/upgrade buildings until they have a legendary city. These buildings can generate resources such as food and iron; towns/cities can be conquered and colonized… you get the picture.

My initial investigation of the data did not uncover any of the obvious simple patterns, but did manage to find a way of connecting some pairs of players in a transaction relationship (the data for each player included a transaction list which gave one of 255 numeric locations and the transaction amount; I reasoned that the location/amount pair was likely to be unique).

The data is a snapshot in time, which appeared to rule out questions involving changes over time. Finally, I realized that time data was present in the form of the order in which each player created buildings in their village/town/city.

Buildings are the mechanism through which players create resources. What does the data have to say about gamers preferential building construction order? Do different players with different playing strategies use different building construction orders?

A search of the Illyriad website located various beginners’ guides containing various strategy suggestions, depending on player references for action.

Combining the order of the first 20 different buildings, created by all 50,000 players, into an aggregate preference building order we get:

Library
Storehouse
Lumberjack
Clay Pit
Farmyard
Marketplace
Quarry
Iron Mine
Barracks
Consulate
Mage Tower
Paddock
Common Ground
Brewery
Tavern
Spearmaker
Tannery
Book Binder
Flourmill
Architects` Office

A couple of technical points: its impractical to get an exact preference order for more than about 10 players and a Monti Carlo approach is used by RankAggreg and building multiple instance of the same kind of building were treated as a single instance (some form of weighting might be used to handle this behavior):

The order of the top three ranked buildings is very stable, but some of the buildings in lower ranks could switch places with adjacent buildings with little impact on ranking error.

Do better players use different building orders than poor players? The data does not include player ability data as such; it included game ranking (a high ranking might be achieved quickly by a strong player or slowly over a longer period by a weaker player) and various other rankings (some of which could be called sociability).

Does the preference for buildings change as a players’ village becomes a town becomes a city? At over 200 minutes of cpu time per run I have not yet had the time to find out. Here is the R code for you to try out some ideas:

library("plyr")
library("RankAggreg")
 
get_build_order=function(df)
{
# Remove duplicates for now
dup=duplicated(df$building_id)
 
# Ensure there are at least 20
build_order=c(df$building_id[!dup], -1:-20)
return(build_order[1:20])
}
 
# town_id,building_id,build_order_for_town
#1826159E-976D-4743-8AEB-0001281794C2,7,1
build=read.csv("~/illyriad/town_buildings.csv", as.is=TRUE)
 
build_order=daply(build, .(town_id), get_build_order)
 
build_rank=RankAggreg(build_order, 20)

What did other teams discover in the data? My informal walk around on Saturday evening found everybody struggling to find anything interesting to talk about (I missed the presentation on Sunday afternoon, perhaps a nights sleep turned things around for people, we will have to check other blogs for news).

If I was to make one suggestion to the organizers of the next gaming data hackathon (I hope there is one), it would be to arrange to have some domain experts (i.e., people very familiar with playing the games) present.

ps. Thanks to Richard for organizing chicken for the attendee who only eats pizza when truly starving.

Update

Usage statistics for the game DDNET.

Predictive Modeling: 15th COW workshop

October 26, 2011 No comments

I was at a very interesting workshop on Predictive Modeling and Search Based Software Engineering on Monday/Tuesday this week and am going to say something about the talks that interested me. The talks were recorded and the videos will appear on the web site in a few weeks. The CREST Open Workshop (COW) runs roughly once a month and the group leader, Mark Harman, is always on the lookout for speakers, do let him know if you are in the area.

  • Tim Menzies talked about how models built from one data set did well on that dataset but often not nearly as well on another (i.e., local vs global applicability of models). Academics papers usually fail to point out that that any results might not be applicable outside of the limited domain examined, in fact they often give the impression of being generally applicable.

    Me: Industry likes global solutions because it makes life simpler and because local data is often not available. It is a serious problem if, for existing methods, data on one part of a companies software development activity is of limited use in predicting something about a different development activity in the same company and completely useless at predicting things at a different company.

  • Yuriy Brun talked about something that is so obviously a good idea it is hard to believe that it had not been done years ago. The idea is to have your development environment be aware of what changes other software developers have made to their local copies of source files you also have checked out from version control. You are warned as soon your local copy conflicts with somebody else’s local copy, i.e., a conflict would occur if you both check in your local copy to the central repository. This warning has the potential to save lots of time by having developers talk to each about resolving the conflict before doing any more work that depends on the conflicting change.

    Crystal is a plug-in for Eclipse that implements this functionality and Visual studio support is expected in a couple of releases time.

    I have previously written about how multi-core processors will change software development tools and I think this idea falls into that category.

  • Martin Shepperd presented a very worrying finding. An analysis of the results published in 18 papers dealing with fault prediction found that the best predictor (over 60%) of agreement between results in different papers was co-authorship. That is, when somebody co-authored a paper with another person any other papers they published were more likely to agree with other results published by that person than with results published by somebody they had not co-authored a paper with. This suggests that each separate group of authors is doing something different that significantly affects their results; this might be differences in software packages being used, differences in configuration options or tuning parameters, so something else.

    It might be expected that agreement between results would depend on the techniques used, but Shepperd et als analysis found this kind of dependency to be very small.

    An effect is occurring that is not documented in the published papers; this is not how things are supposed to be. There was lots of interest in obtaining the raw data to replicate the analysis.

  • Camilo Fitzgerald talked about predicting various kinds of feature request ‘failures’ and presented initial results based on data mined from various open source projects; possible ‘failures’ included a new feature being added and later removed and significant delay (e.g., 1 year) in implementing a requested feature. I have previously written about empirical software engineering only being a few years old and this research is a great example of how whole new areas of research are being opened up by the availability of huge amounts of data on open source projects.

    One hint for PhD students: It is no good doing very interesting work if you don’t keep your web page up to date so people can find out more about it

I talked to people who found other presentations very interesting. They might have failed to catch my eye because my interest or knowledge of the subject is low or I did not understand their presentation (a few gave no background or rationale and almost instantly lost me); sometimes the talks during coffee were much more informative.