Go faster R for Google’s summer of code 2012
The R Foundation has been accepted for Google’s summer of code and I thought I would suggest a few ideas for projects. My interests are in optimization and source code analysis, so obviously the suggestions involve these topics.
There are an infinite number of possible optimizations that can be applied to code (well, at least more than the number of atoms in the known universe). The first job for any optimization project is to find the common characteristics of the code; once these are known the available resources can be concentrated on improving the performance of these common cases (as they evolve optimizers necessarily attack less frequently occurring constructs and in rare cases address a previously unnoticed common pattern of behavior).
What are the common characteristics of R programs? I have no idea and have not seen any published empirical analysis on the subject. Analysing the characteristics of the R source code ecosystem would make a very good summer project. The analysis could be static, based purely on the source, or dynamic, looking at the runtime characteristics. The purpose of analyse is to gain a general understanding of the characteristics of R code and to investigate whether specific kinds of optimizations might be worthwhile. Often optimizations are suggested by the results of the analysis and in some cases optimization possibilities that were thought to be worthwhile turn out to have little benefit. I will stick my neck out and suggest a few optimizations that I think might be worthwhile.
- Reducing object copying through last usage analysis. In R function arguments are passed using call-by-value, that is a copy of the argument is made and passed to the called function. For large arguments call-by-value is very time-consuming and if the value of the argument is not used after the called function returns the copy operation is redundant. I think it would be a worthwhile optimization for the R compiler to replace call-by-value with call-by-reference in those cases where the current argument is not read again and is modified during the call (the R implementation uses copy-on-write so there is overhead minimal overhead if the argument is only ever read); analysis is needed to verify this hunch.
- Operations on short vectors. Many processors have instructions that simultaneously perform the same operation on a small number of values (e.g., the Intel/AMD SSE instructions). If it is possible to figure out that the two vectors involved in an add/subtract/multiple/etc are short, the same length, do not contain any NA, then a ‘short-operation’ instruction could be generated (when running on processors without the necessary support the R interpreter would implement these the same way as the longer forms). Analysis is needed to find out how often short vector operations occur in practice.
- Do R programs spend most of their time executing in C/Fortran routines or in R code? If the answer is C/Fortran and there is some set of functions that are called frequently then it may be worthwhile having versions of these that are tuned to the common case (whatever that might be). If the answer is R then what is the distribution pattern of R operations? There is a lot that can be done to speed up the R interpreter, but that project will need a lot more effort than is available in a summer of code and we need to get some idea of what the benefits for the general population might be.
To increase coverage of R usage, the measurement tools should be made available for people to download and run on their own R code, and hopefully forwarding the output back to some central collection point. For maximum portability this means writing the static analysis tools in R. By their very nature the dynamic analysis measurements have to be made via changes to the R system itself, getting users to download and use prebuilt binaries (or building from source) has always been fraught with problems; it is always hard o get users to buy into helping out with dynamic measurements.
Sophisticated static analysis consumes lots of compute resources. However, R programs tend to be short, so the required resources are unlikely to be that great in R’s case; even writing the analysis in R should not cause the resource requirements to be that excessive.
The only other language likely to share many of R’s language usage characteristics that I can think is APL. There have been a few published papers on APL usage, but these were not that wide-ranging and probably not of much use. Perhaps somebody who worked for a now defunct APL compiler company has a copy of in-house performance analysis reports they can make available.
Recent Posts
Recent Comments
Tags
Archives
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
Hi Derek,
An interesting direction.
I hope you will e-mail the google group soon with your suggestion (coupled with adding it to the wiki), so people will be able to respond to you there.
Cheers,
Tal
The first bullet point seems very wrong. One of the greatest features of R is the *illusion* of pass-by-copy, but the copy (if any) is only made at the point of copy-on-write. Just reading function arguments inside a function doesn’t make a copy of them, and certainly unused arguments are not copied! How did you arrive at this misunderstanding?
@Matthew Dowle
Thanks, perhaps I had oversimplified the discussion. Added some wording to make it clear that this optimization would only apply if the argument was modified during the function call.
Have you seen this:
http://radfordneal.wordpress.com/category/statistics/statistics-computing/r-programming/
@Kevin Wright
Yes, I followed the whole bracket discussion. The R team seem to have got the major design stuff right but not followed through and sorted out all the minor details. If there is a large interpreter overhead for many users (I’m not convinced of this) then a major redesign to handle modern processor characteristics (e.g., caching and long pipelines) is needed.