Home > Uncategorized > Programming Languages: nothing changes

Programming Languages: nothing changes

While rummaging around today I came across: Programming Languages and Standardization in Command and Control by J. P. Haverty and R. L. Patrick.

Much of this report could have been written in 2013, but it was actually written fifty years earlier; the date is given away by “… the effort to develop programming languages to increase programmer productivity is barely eight years old.”

Much of the sound and fury over programming languages is the result of zealous proponents touting them as the solution to the “programming problem.”

I don’t think any major new sources of sound and fury have come to the fore.

… the designing of programming languages became fashionable.

Has it ever gone out of fashion?

Now the proliferation of languages increased rapidly as almost every user who developed a minor variant on one of the early languages rushed into publication, with the resultant sharp increase in acronyms. In addition, some languages were designed practically in vacuo. They did not grow out of the needs of a particular user, but were designed as someone’s “best guess” as to what the user needed (in some cases they appeared to be designed for the sake of designing).

My post on this subject was written 49 years later.

…a computer user, who has invested a million dollars in programming, is shocked to find himself almost trapped to stay with the same computer or transistorized computer of the same logical design as his old one because his problem has been written in the language of that computer, then patched and repatched, while his personnel has changed in such a way that nobody on his staff can say precisely what the data processing Job is that his machine is now doing with sufficient clarity to make it easy to rewrite the application in the language of another machine.

Vendor lock-in has always been good for business.

Perhaps the most flagrantly overstated claim made for POLs is that they result in better understanding of the programming operation by higher-level management.

I don’t think I have ever heard this claim made. But then my programming experience started a bit later than this report.

… many applications do not require the services of an expert programmer.

Ssshh! Such talk is bad for business.

The cost of producing a modern compiler, checking it out, documenting it, and seeing it through initial field use, easily exceeds $500,000.

For ‘big-company’ written compilers this number has not changed much over the years. Of course man+dog written compilers are a lot cheaper and new companies looking to aggressively enter the market can spend an order of magnitude more.

In a young rapidly growing field major advances come so quickly or are so obvious that instituting a measurement program is probably a waste of time.

True.

At some point, however, as a field matures, the costs of a major advance become significant.

Hopefully this point in time has now arrived.

Language design is still as much an art as it is a science. The evaluation of programming languages is therefore much akin to art criticism–and as questionable.

Calling such a vanity driven activity an ‘art’ only helps glorify it.

Programming languages represent an attack on the “programming problem,” but only on a portion of it–and not a very substantial portion.

In fact, it is probably very insubstantial.

Much of the “programming problem” centers on the lack of well-trained experienced people–a lack not overcome by the use of a POL.

Nothing changes.

The following table is for those of you complaining about how long it takes to compile code these days. I once had to compile some Coral 66 on an Elliot 903, the compiler resided in 5(?) boxes of paper tape, one box per compiler pass. Compilation involved: reading the paper tape containing the first pass into the computer, running this program and then reading the paper tape containing the program source, then reading the second paper tape containing the next compiler pass (there was not enough memory to store all compiler passes at once), which processed the in-memory output of the first pass; this process was repeated for each successive pass, producing a paper tape output of the compiled code. I suspect that compiling on the machines listed gave the programmers involved plenty of exercise and practice splicing snapped paper-tape.

Computer   Cobol statements   Machine instructions   Compile time (mins)
UNIVAC II     630                    1,950                240
RCA 501       410                    2,132                 72
GE 225        328                    4,300                 16
IBM 1410      174                      968                 46
NCR 304       453                      804                 40
  1. No comments yet.
  1. No trackbacks yet.