Got Guessing Game Application – Specification

Overview: The application will have users guess the number of dots print on a Flash canvas. The dots will be randomly scattered on a 1 x 1 canvas when the users load the application. E.g., if the the game has 950 dots, then 950 dots will be randomly placed on the canvas. The number of dots will be determined when the user loads the application – for now, this can just be written as a initialized variable in the action script. Here is an example of what the dot picture should look like:

http://dl.getdropbox.com/u/420874/picture5.jpeg

Features:

1] Text box where users enter their guess (with error handling so only numbers are entered)

2] “Above or below” – instead of asking for number, users are asked whether the number of dots is above or below some supplied number. The above/below number will either (a) be set as a declared variable or (b) drawn from some specified distribution

3] “Gambling.” Subjects can bet whether or not they are in the top half of all people who will play the game. The gamble will take the form of a list of text descriptions stored as a vector in the ActionScript and initialized at runtime – something like {“for option A, you will get...” ,”For option B, you will get...” , … }. The workers choice will be recoded in the database. This question can be asked before or after they canvas of dots is presented.

Flow:

When users first arrive, they answer some demographic questions if they have not already done so. Their workerId (passed in the referring URL) is checked against a table in the MySQL database. If they have not completed a task before, they are asked for their gender (male or female), age, and whether they are in the US, India or some other country. The results from the survey questions are stored in a MySQL table. Then they move on to the game.

The users will workers from Amazon.com's Mechanical Turk (AMT). Because things will be done through AMT, the Flash application must do a few things, which I will discuss under the section “Working with AWS.” After users have finished playing, they will “submit” their answers. When then submit their drawing, the Flash application needs to:

Store the users data in a database

Submit some data back to the AWS server (namely the assignmentID)

Working with AWS: This application will be used with Amazon.com's Mechanical Turk as an “External HIT.” What this means practically is that all incoming users will have a parameter in the referring URL called “assignmentId.” The Flash application needs to get this id, use it as a primary key in the database and then pass it back to AWS when the HIT is submitted. For details, please see the attached sample application – or check out the AWS code samples.

Milestones:

Get the dot drawing to work

Build the MySQL back-end

Get the AWS/AMT pieces to work

For each milestone, I'd like to see a working version on your server. I'll then try to set things up on my server and confirm that they are working.

Future: Once the basic interface is working, I will have several modifications and next steps. These will mostly consist of users being able to observe the guesses of others.

Guidance: Please carefully comment all code, including the MXML. For external HTTP services, PHP and Python are both fine – but I would prefer PHP. The actual deliverables should be Flex Builder 3 project zip files. I'd prefer it if you send me links to downloads rather than email me projects.

