
Error Density and Size
in Ada Software

Card Witnrow, Unisys Communication Systems

M error den- in
proglam modules

appears to be lowest
at an optimum

intermediate size,
as this empincalstudy

shows. FarAda, that
size is abut 225 lines

26

rowing awareness that software en-
gineering needs to improve its G products and incorporate more

rigor into its processes has recently led to
an increased interest in metrics. It has
long been recognized that the ability to
measure a process or product increases
the understanding of i t As Lord William
Kelvin, the British mathematician and
physicist, said, When you can measure
what you are speaking about, and express
it in numbers, you know something about
it.” On the other hand, his contemporary,
the biologist Thomas H. Huxley, warned,
“As the grandest mill in the world will not
extract wheat flour from peascods, so
pages of formulas will not get a definite
result out of loose data.”’ This was a 19th-
century formulation of “garbage in, gar-
bage out.”

With this caveat in mind, consider the
value of two measures: module size and
error density.

Size is the oldest measure of software

0740-7459/90/0100/0026r$o1.oo 0 1990IEEE

complexity, which is believed to be a
major driver of the maintenance effort.
While more sophisticated complexity
measures have been devised, no universal
tool has emerged, and size - defined
here as source lines of code -continues
to be popular.2 Although there are many
problemswith this metric, such as the def-
inition of a source line and the difficulty
of comparisons across languages or across
programming styles, its popularity is justi-
fied on the bases of ease of determination
and a track record of success in effort esti-
m a t i ~ n . ~ , ~

Error density is popularly believed to be
directly related to program size. James
Martin has said that there is a dispropor-
tionate increase in complexity with
increasing size, implying a similarly dis-
proportionate increase in errors.’ Unfor-
tunately, I could find no published study
to support this view, although TA. Thayer
and colleagues6 have hinted at the possi-
bility. Nevertheless, this direct relation-

IEEE Software

ship seems to be what you would intu-
itively expect. As a module increases in
size, it becomes more difficult for the p r e
grammer to manage the increasing num-
ber of details, which leads to the genera-
tion of errors.

However, a higher error density oc-
curred in smaller modules in studies by
Vincent Shen and colleagues and by
Victor Basili and Barry Perricone.8 Shen
and colleagues found that an inverse rela-
tionship existed up to about 500 lines. Be-
yond that they found no relationship, but
they had a small sample of modules larger
than 500 lines. They studied software
written in Pascal, PL/S, and assembly lan-
guage. Basili and Perricone examined
Fortran modules sized mostly at fewer
than 200 lines. They attributed the inverse
relationship primarily to the predomi-
nance of errors at the interfaces between
modules, such as incompatible usage of
common data. These interface errors
were spread equally across all modules re-
gardless of size and thus represented a
higher density in smaller modules. Other
possible causes they noted were that most
modules examined were small (causing
bias), that extra care may have been taken
in coding larger modules, and that there
may have been undetected errors in
larger modules.

My colleagues at Unisys and I had an o p
portunity to contribute to this area, hav-
ing just completed the development of a
large project written in Ada. The project
team kept error reports, and the many
modules ranged greatly in size. We ana-
lyzed module size to see if there was a rela-
tionship with module quality. We used
error density - defects per thousand
lines - as an inverse measure of quality:
the lower the error density, the higher the
quality.

Method
The object of our study was the Ada soft-

ware for the command and control of a

January 1990

military communications system. It was
developed by a team of about 17 experi-
enced programmers to whom Ada was a
new language.

We computed the error density for each
of the 362 modules, which totaled 114,000
lines. (Lines are defined here as noncom-
ment lines. There were more of these in
the Ada software studied than there were
Ada statements, since a statement often

The direct relationship
between number of

errors andprogram size
seems intuitive. But

other studies also showed
that small pmglams are

errotymrone. Why?

spanned more than one line. To make
these results more comparable to pub-
lished work on error density, we converted
the statement count to lines by making a
manual count of a representative sample
of modules to determine the ratio of ac-
tual lines to Ada statements. We then a p
plied this factor, 1.77, to the statement
counts determined by an automated
count of semicolons.)

The project chose to treat Ada packages
-rather than procedures, functions, sub-
programs, or tasks - as modules because
the package is the basic structuring unit of
the Ada language and because this soft-
ware was developed on a package basis.

The data are based on problem/change
reports written during the test and inte-
gration phases - beginning immediately
after code and unit testing and ending
with the delivery of the product to the
customer. Error records for the period be-

fore thiswere not kept and do not yet exist
for the period after it.

The problem/change reports, origi-
nally numbering 696, were reduced to 491
by eliminating those that were not true
software errors. Those eliminated in-
cluded changes required by changed re-
quirements, document changes, and
errors caused by hardware. The p r o b
lem/change report count was then fur-
ther reduced by four to 487 by eliminating
those with incomplete information.

An error here is defined as a package
being changed because of a p r o b
lem/change report, so if four report er-
rors were made for a package, the error
count for that package is four, although
the number of lines of code changed may
well be greater than four. The number of
errors found per package ranged from
zero to 39. The average was two errors per
package. The average package size was
316 lines, with a range of four to 5,160
lines. Of the 362 modules in the study, 137
(38 percent) had at least one error.

ReSUttS
Figure 1 shows a scatter diagram of the

resulting error densities plotted with size
as the independent variable. The data are
from the packages with nonzero error
densities only. This diagram bears a
striking resemblance to one published by
Shen and colleagues. There is a regular
pattern of declining error density with in-
creasing size, but the regularityappears to
be partly an artifact of the discrete nature
of the data. The empty area in the lower
left represents the impossible case of hac-
tional errors. The lower limit of one error
per module manifests itself as an orderly,
curving row of data points. To highlight
this, Figure 2 shows the same data con-
verted to log (base 10) values. The curve
for oneerror modules is here a straight
row; you can discern similar rows for two-
error modules and so on.

However, to characterize the data com-

27

0 1000 2000 3000 4000 5Ooo 6000
Lines of code

Fmre 1. Error density versus the size of Ada packages for those packages that had
errors.

I

8 .o-
2

-.5 I I I I I I

I I
R e r e 2. Log error density versus log size for the data in Figure 1.

7

6 -
.- ; 5 -
-0

4 - s - 3 -
2 -

1 -

0 I I 1 I I
63 100 158 251 398 630

Source lines (maximum in range)
1 >loo0

Key: = Average errors per thousand source lines

Figure 3. Error density versus size for all packages (those in Figure 1 plus those with no
errors) in bar-chart format. The standard error of the mean represented by each bar is
shown at the top of the bar.

28

pletely, the error-free modules must be in-
cluded. This of course produces many
points along the x axis. You can perform
no significant curve fitting on these data,
so we used a bar graph to show the average
e r ro r density found in all modules
grouped by size (Figure 3). We chose the
size categories by equal log spacing of the
number of lines. The numbers on the x
axis represent the largest number of lines
in the collection of modules represented
by the bar above. For example, the bar la-
beled “100”represents moduleswith 64 to
100 lines, and the bar labeled “158” repre-
sents 101 to 158 lines. The values on top of
the bars show the standard errors of the
values represented by the bars.

This graph shows the pattern postu-
lated above: falling error density for small
modules followed by rising error density
for larger modules, with an apparent opti-
mum size of 200 to 250 lines. Table 1 shows
detailed statistics for the data of Figure 3.

~ Cornparingstudies ’ This result lends support to the hypoth-
esis that there is an optimal, intermediate
module size. This might be dubbed the
Goldilocks principle after the children’s
fable and suggests that software designers
may decrease how error-prone their prod-
ucts are by decomposing problems in a
way that leads to software modules that
are neither too large nor too small.

Differences. Basili a n d Perricone’s
study showed a declining error rate, with
the lowest rate occurring in the largest cat-
egory (code larger than 200 lines). The
main differences between their results
and our results are in the sample size of
large modules and the method of count-
ing lines. Basili and Perricone had only
three modules larger than 200 lines, while
half the modules jn our study were that
large. Also, Basili and Perricone counted
only executable lines (in Fortran) and not
common data statements, while our study
counted both declaration and body lines
of source code (in Ada). (Neither study
counted comment lines.) Therefore,
their line counts may have under-
estimated size when compared to our
study. Another difference is the part of the
life cycle studied: Basili and Perricone
covered the coding through the mainte-

IEEE Software

Table 1.
Errordensity statistics for packages grouped by size.

Groups were chosen for equal log spacing of source lines.

Package maximum Log,, maximum Range of Number of Mean
source lines source lines source lines packages error density Standard error

63 1.8 4-62 93 5.4 1.5
100 2.0 64-97 39 4.9 1.4
158 2.2 103- 154 52 3.4 0.9
25 1 2.4 161-250 53 1.8 0.5
398 2.6 25 1-397 46 5.2 1.1
630 2.8 402-625 31 5.6 1.9

1 ,ooo 3 .O 65 1-949 22 6.8 1.3
>l,OoO >3.0 1,050-5,160 26 8.3 1.4

nance phases, while our study covered
only the integration and test phases.

Shen and colleagues, who also found a
declining error rate with size, studied a
compiler written in PL/S, a derivative of
PL/I. They showed this inverse relation-
ship to hold up to a size of about 500 lines.
They did not specify their definition of
lines. The lifecycle phases they studied
were integration through maintenance.

Thayer and colleagues studied a large
command and control system written in
Jovial 54, an Algol derivative, and found no
correlation between module size and the
density of the errors detected during pre-
operational testing. Preoperational errors
constituted the bulk of errors studied.
However, limited data on operational er-
rors suggested a higher error density in
routines of 1,000 to 2,500 lines.

But, given all the differences in phase,
language, application, and measuring
technique, the surprising outcome is the
concordance of results among studies.

Explaining the curve. You can view the
shape of the graph of error density versus
size of all modules as an overlay of two
phenomena.

The reason for the rising tail is intuitive:
Complexity increases with module size,
inviting errors. There is a limit to the
amount of code a programmer can hold
in his immediate frame of attention.
When the module size exceeds this, errors
of oversight are more likely. Thus, the ris
ing tail of the curve is understandable.

However, the initial falling portion of
the curve seems to be counterintuitive.
The scatter graph of error density versus
size for modules that had at least one
error shows that an artifact of discrete
data contributes to the impression of fall-
ing error density. Only by including the
error-free modules do you get a true pic-

ture, but even then the phenomenon of
falling error density persists.

Two possible reasons are related to tes
ting. When just one part of a module is
tested, other parts are to some degree also
tested because of the connectivity of all
parts. Thus, in a larger module, some
parts may get some free testing as testing
proceeds through the early phases that
precede error reporting. Or perhaps the
larger modules contain undiscovered er-
rors because of inadequate testing of all
paths. Another possible cause of falling
error density is that interface errors tend
to be evenly distributed among modules
and, when converted to error density, they
produce larger values for small modules.

An interesting analogy is a study by Rajiv
Banker and Chris Kemerer, who exam-
ined software quality and size on a differ-
ent scale, based on software projects as a
whole rather than on software modules?
They examined the economy or produc-
tivity of many software projects and re-
lated this to project size. The result was
that some investigators reported increas-
ing economy with increasing size, while
others reported decreasing economy with
increasing size.

Banker and Kemerer reconciled these
conflicting results with a hypothesis that
said for any environment there is an opti-
mal product size. For lesser sizes there is
rising economy, and for greater sizes there
is declining economy. They attributed the
rising economy primarily to the spreading
of fixed overhead; they attributed the de-
clining economy to proliferating commu-
nication paths.

There appears to be a similarity between
this phenomenon and the module-based
data reported earlier. The futed overhead
of the project is comparable to the rela-
tively constant factor of interface errors in
the modules. While the overhead is

spread over the components of the proj-
ect, the interface errors are spread over
the lines of code when converted to error
density. On the declining side of the econ-
omy curve, the proliferating communica-
tion paths (human) of the project are
clearly analogous to the proliferating
communication paths (computational)
of the module.

We thus propose a synthesis of the two
views of module error density into one
larger view that is analogous to the view
Banker and Kemerer put forth for proj-
ect-based data. This new view is one of fall-
ing error density, followed by rising error
density for increasing module sizes. This
provides a framework for viewing the sur-
prising results of Shen and colleagues and
of Basili and Perricone as credible phe-
nomena.

Ada peculiarities. Comparing this study
with others, no result that might be uni-
quely attributable to the Ada language is
evident. Given the many error-reducing
features ofAda- data abstraction, strong
typing, information hiding, generics, and
dynamic binding-you might expect that
error characteristics, including the pat-
tern of error density versus size, would be
different for this software. The Ada com-
piler detects certain classes of errors that
can persist through testing in other lan-
guages. If the high error density of small
modules is due to interface errors, this
should be lower for Ada software because
the compiler checks for some of this.

However, although the types of errors
may be different, their overall distribution
by module size does not conflict with what
little is known about error density in con-
ventional software. But the newness of
Ada to the development team may have
skewed the results in some way not yet un-
derstood.

January 1990 29

ur results and those of others suggest a new view of error
density: that it declines as module size increases up to 0 some optimal size, beyond which error density rises with

size. Our study of a large Ada project shows this optimal size to be
about 225 lines. Two studies done with other languages else-
where suggest optimal sizes of 500 and more than 200 lines. Un-
doubtedly, this optimal size will vary depending on language and
style, but we postulate the general phenomenon of falling and
then rising error density as related to module size as a universal
programming phenomenon.

Based on what is known so far about error density and size, “the
smaller the better” is not necessarily good advice to the module
designer. On the other hand, extremely long modules should
probably also be avoided. The middle road of perhaps 200 to 500
lines, depending on the project, will generally produce the low-
est error density and the most maintainable code.

The software tester is well advised to give adequate attention to
testing modules of either extreme in size. The software main-
tainer may want to give more weight to considerations of rede-
signing and rewriting such modules.

There has been little investigation on either error density or
module size. More insight will be gained when data are analyzed
by phase and according to error type. Other data, such as time
spent in correction and testing and the number of lines changed,

could be used to refine the understanding of the relationship
between error density and size. There is a notable lack of such
data for Ada projects and for projects as large as the one studied
here. Future studieswill provide a basis for better understanding
of the significance of module size in particular and more reliable
software in general. *:*

Acknowledgments
I thankJohn Merritt for directing my attention to this area, Nancy de

Nevers for porting the data, Eileen Noel for library searches, Dean and
Kent Withrow for reviewing this article, and several anonymous review-
ers who made valuable suggestions.

References
1. L. Thomas, Late-Night Thghts aListeningtoMahler’sNinth Symphay,

Oxford University Press, Oxford, England, 1983, pp. 143144.
2. W. Harrison et al., “Applying SoftwareComplexity Metrics to Pre

gram Maintenance,” Compuiq Sept. 1982, pp. 65-79.
3. B. Curtis, S.B. Sheppard, and P. Milliman, “Third-Time Charm:

Stronger Prediction of Programmer Preference by SoftwareGom-
plexity Metrics,” Pmc. Fourth Int’l Gmj So@are Eng., CS Press, Los
Alamitos, Calif., 1979, pp. 356360.

4. D. Kafura and G. Reddy, ‘The Use of SoftwareComplexity Metrics in
Software Maintenance,” EE.5 Trans. So@ureEng.., March 1987, pp.
335-345.

5. J. Martin andC. McClure, So@ureMaintenanu, Prentice-Hall, Engle-
wood Cliffs, N.J., 1983, p. 52.

6. T A Thayer et al., “Software Reliability Study,” Tech. Report RADG
TR-76238, Rome Air Development Center, Griffiss AFB, N.Y., 1976,
pp.4-51.

7. V. Shen et al., “Identlfylng Error-Prone Software: An Empirical
Study,”IEEETmns. SofhuareEng,April1985, pp. 317-324.

8. V.R. h i l i and B.T. Perricone, ‘Software Errors and Complexity: An
Empirical Investigation,” Comm. A M , Jan. 1984, pp. 42-52.

9. RD. Banker and C.F. Kemerer, “Scale Economies in New Software
Development”EE.5Tmns. SofhuareEng., Oct. 1989, pp. 1,1991,205.

Carol Withrow is a principal software engineer at Unisys Communica-
tion Systems Division in Salt Lake City. She is the technical leader for the
maintenance of the command-andcontrol software of a military com-
munication system. Before joining Unisys, she was a programmer/ana-
lyst with the University of Utah Research Institute with interests in statis-
tics and Earth-science applications. Her interests include software
metrics and softwareengineering processes.

Withrow has a BS in biology from Arizona State University and an MS
in computer science from the University of Utah. She is a member of
ACM, ACM SlGSoft, and Computer Professionals for Social Responsibil-
ity.

Address questions about this article to Withrow at Unisys Communica-
tions,640N.2200W.St.,MSE1D14,SaltLakeCity,UT84116.

IEEE Software

