
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 4, APRIL 1985 317

Identifying Error-Prone Software-An Empirical Study
VINCENT Y. SHEN, TZE-JIE YU, STEPHEN M. THEBAUT, MEMBER, IEEE, AND LORRI R. PAULSEN

Abstract-A major portion of the effort expended in developing com-
mercial software today is associated with program testing. Schedule and/
or resource constraints frequently require that testing be conducted so
as to uncover the greatest number of errors possible in the time allowed.
In this -paper we describe a study undertaken to assess the potential
usefulness of various product- and process-related measures in identify-
ing error-prone software. Our goal was to establish an empirical basis
for the efficient utilization of limited testing resources using objective,
measurable criteria. Through a detailed analysis of three software prod-
ucts and their error discovery histories, we have found simple metrics
related to the amount of data and the structural complexity ofprograms
to be of value for this purpose.

Index Tenns-Defect density, error-prone modules, probability of
errors, program testing, software errors, software metrics.

I. INTRODUCTION
INTEREST in the field of program testing continues to

grow-as does the demand for complex, and reliable, pro-
grams. In attempting to meet this demand, successful producers
of commercial software have learned two important principles.

1) It is extremely important that software be delivered to
customers on schedule and with the fewest number of errors
possible.
2) The cost of correcting program errors can (and typically

does) increase enormouvsly'with time to discovery.1
Consequently, techniques which facilitate the early detection

of the majority of programming errors have been actively
sought. One approach is to selectively focus available resources
on those components of a software system which are believed
to have the highest concentration of defects. The key, of course,
is to identify these components as early in the development
process as possible.
In this paper, we describe a study undertaken to assess the

potential usefulness of various product- and process-related
2-

measures in identifying those components of large software
systems which are most likely to contain errors. Our goal was

Manuscript received June 29, 1984; revised November 5, 1984.
V. Y. Shen and T. J. Yu are with the Department of Computer Sci-

ences, Purdue University, West Lafayette, IN 47907.
-S. M. Thebaut is with the Department of Computer and Information

Sciences, University of Florida, Gainesville, FL 32611.
L. R. Paulsen -is with the Santa Teresa Laboratory, IBM Corp., San

Jose, CA 95150.
1The experience of one large producer, for example, suggests cost ratio

differences of 1:20:80 for corrections made prior to, during, and after
formal test, respectively [101.

2"Product-related" measures are those which can be derived from
some representation of the program itself (e.g., source code, pseudo-
code, design specifications, etc.). "Process-related" measures are those
which can be derived from information related to the process by which
a program is developed, tested, modified, etc.

to establish an empirical basis for the use of objective measur-
able criteria in developing cost-effective'strategies for program
testing. The study was based on the detailed analysis of three
program products developed at IBM's Santa Teresa Laboratory-
a large and modern software production facility. The develop-
ment approach employed was highly disciplined, and involved
two separate phases of program testing-first by the develop-
ment team, and then by independent test groups during and
after code integration. We begin by describing these phases
in some detail.

II. PROGRAM TESTING AT SANTA TERESA

The first phase of program testing begins early in the develop-
ment process with a series of design reviews and code inspec-
tions. Following these, "unit testing" is performed to verify
the correct operation of each module in isolation. Errors de-
tected during this phase are recorded informally and are cor-
rected by the individual programmers responsible. Such errors
were not considered in this study as the data were not available.
The second phase consists of a formal series of tests per-

formed by two independent testing organizations. The intent
is to ensure that the program satisfies its specified functional
requirements. There are two basic phases involved.
1) Development Verification Test -(DVT): Conducted at

the time of initial system integration, this series of tests is de-
signed to 1) remove defects from any new function added to
the product, and 2) verify that all functions provided in the pre-
vious version of the program continue to operate as specified.
Any defects discovered are formally recorded and reported
for corrective action. The support system used to trace the
status of each error report, or program trouble memorandum
(PTM), provided a convenient and objective mechanism for
collecting error data.
2) Manufacturing Volume Test (MVT): This series of tests

is designed to find and correct problems which affect the ease-
of-use, installation, and conversion required to put the new
product in service. A separate testing organization performs
the test. Any additional deficiencies discovered are recorded
as PTM's.
Errors that are discovered and corrected following product

release result in the issuance of an authorized program analysis
report (APAR). For the products considered in our study,
complete APAR data were made available.

III. SOFTWARE PRODUCTS

The products studied were developed and released since 1980.
Product A is a software metrics counting tool written primarily
in Pascal, and was designed for the internal use of various de-

0098-5589/85/0400-0317$01.00 © 1985 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-il, NO. 4, APRIL 1985

TABLE I
PRODUCT SUMMARY

Product Modules KTSI KCSI Language

A 25 7 7 Pascal

BI 253 86 86 PL/S

B2 253 89 3 PUS

B3 25 94 5 PUS

C 639 326 60 Assembly

velopment organizations within IBM. Product B is a compiler
written primarily in PL/S (system derivative of PL/1), and has
been released in three successive versions (Bi, B2, and B3).
Our study incorporates data from each version. Product C is
a database system written primarily in Assembly language.
Programs are composed of separately compilable subprograms

called "modules;" typically, each module supports one or more

system functions. For our purposes, each module was classi-
fied as one of the following types.

1) BASE modules-unchanged modules from a previous re-

lease of the same product;
2) MODIFIED modules-changed modules from a previous

release of the same product;
3) NEW modules-modules that did not exist in a previous

release of the same product;
4) TRANSLATED modules-modules taken from a different

product which require language translation but no change in
logic.
About 50 percent of the modules (126 out of 253) in the

first release of Product B were adapted from another product
written in a different language. These modules were translated
into PL/S, either manually or with the aid of a language trans-
lation tool developed within IBM.
The size and principal language of the products considered

are given in Table I. The column labeled "KTSI" shows the
total number of source instructions (excluding comments),
in thousands. The column labeled "KCSI" shows the total
number of NEW, MODIFIED, or (in the case of product 11)

TRANSLATED source instructions, in thousands. Thus, KTSI
and KCSI entries are the same for the two "newly developed"
products, A and Bl.
The APAR records available for products A, Bi, B2, and C

were essentially complete; each had seen wide use and few
additional APAR's were expected. Product B3, however,
was relatively new and had seen less use than others. Thus,
results of our APAR-related analysis for B3 should be weighed
accordingly.

IV. THE SOFTWARE METRICS

A program analysis tool in use at Santa Teresa was made
available for the study. It provides the basic metrics of Hal-
stead's Software Science [41:

1-the number of unique operators;
712-the number of unique operands;
N1-the total number of operators; and

N2-the total number of operands.

In addition, the tool was extended for this study to provide

DE-the total number of decisions

which is closely related to McCabe's graph theoretic measure
v(G) [5]. DE is simply a count of the conditional statements,
loops, and Boolean operators such as AND, OR, NOT, etc.
Also considered was the difference in metric vlaues from one

product version to another. For example, the magnitude of
the difference in f77 for two successive versions of a given
module is denoted A7R1. We will refer to these measures as
change metrics to distinguish them from others.
The basic Software Science metrics were combined by Hal-

stead in a number of ways to produce additional measures.
Considered were

7 =771 + f72 - the Vocabulary measure,
N N1 + N2 - the Length measure,
V N X log277 - the Volume measure,

D =y7 XN- - the Difficulty measure, and

E = D X V- the Effort measure.

It has been shown thatN and V are closely related to the tradi-
tional size measure, lines of code (LOC) [2].
For MODIFIED modules, we also considered a number of

change and nonchange metric combinations (e.g., AN X D)
supported in an e4rlier study with a smaller database [9]. By
restricting our interest to a small number of previously sup-
ported measures, we were able to conduct a more thorough
analysis than would otherwise be possible.
In keeping with our goal to provide tools for identifying

error-prone code in a timely fashion, we have identified four
stages of program development, each of which may be associ-
ated with a given set of product- and/or process-related mea-
sures. These stages are as follows.
1) Start of Program Design: Even before the completion of

program design, a project manager will know something of
the general strategy to be employed. Will the program build
upon a previous version? Can some modules be taken from
another product and translated for this version? To represent
these different approaches, Boolean variables were defined and
assigned values on a module-by-module basis according to the
information available. In this way, the relationship between
program reliability and development strategy could be studied
statistically.
2) End of Program Design: At this stage, it may be possible

to accurately estimate the number of unique operators (771),
unique operands (fl2), and decisions (DE). The accuracy of
such estimates will probably depend on the development strat-
egy employed.3
3) End of Program Coding-Start of Integration Test: With

coding complete, all metrics derivable from source code analysis
become available for study.

3A recent study at Purdue University, for example, showed that ap-
proximately 60 percent of a group of well-disciplined programmers
were able to estimate '72 after program design within 25 percent of
their final values in two experiments [151 .

31 8

SHEN et al.: IDENTIFYING ERROR-PRONE SOFTWARE

4) End of Test: At this point, in addition to the informa-
tion already available, test results (e.g., number of PTM's) for
each module are known.
Most of the metrics considered in this study-in particular,

the product-related metrics-are based solely on the automated
analysis of program source code using the tool at Santa Teresa.
Others, i.e., the process-related metrics, are based on what is
often manually recorded information about the course of proj-
ect development. Therefore, they tend to be sensitive both to
errors in recording and to simple changes in policy or practice.
One process-related metric, the count of defects discovered
during testing, has been used as an independent variable in
several defect prediction models [6], [10], [12]. A major
objective of this study was to identify product-related metrics
which might supplant the use of measures such as this.

V. DEFECT PREDICTION MODELS
For a metric to be useful in deciding how best to allocate

limited testing resources, a statistical relationship should exist
between its value and the relative error-proneness of modules.
In our attempt to identify such metrics, we have focused
primarily on statistical models of the linear type (i.e., models
of the form Y=bo +bIXI +b2X2 +- -). There are power-
ful tools available for the analysis of these models, and they
often serve as satisfactory first approximations to the more
complex relationships which may actually exist.

A. Cumulative Errors
The count of discovered module defects CMD is the depen-

dent variable in this case. This is simply a count of the PTM's
and APAR's associated with each program module. A regres-
sion-derived estimator for CMD will be written as CMD. Since,
as suggested above, the actual number ofreported defects tends
to depend on a number of project-dependent factors, CMD
will be useful chiefly in describing the relative error-proneness
of modules.

B. Postrelease Errors
Since the nature and significance of individual programming

errors can and do vary greatly, it is probably reasonable to
compare modules on the basis of reported defects only when
the numbers considered are large. Such is the case, for example,
when considering CMD since most modules have many PTM's
associated with them. With APAR counts alone, however,
this is not the case. For the products considered in this study,
most modules had no APAR's associated with them, while
those that did typically had only one or two. For this reason,
a binary dependent variable, PAPAR with value zero for no
associated APAR's, and value one otherwise, was used. A
regression-derived estimator for PAPAR (written PAPAR) haS
an interesting and potentially useful interpretation: it repre-
sents the expected probability that a particular module will
be associated with one or more APAR's. As with CMD, how-
ever, estimators for PAPAR should be interpreted carefully.
Since the number of errors reported after product release
will likely be affected by such factors as program use, testing
effort expended, and reporting methods used, generalizations
should be limited to those based on the observed distribution

TABLE II
BASE-NEW-MODIFIED-TRANSLATED MODULE COMPARISONS: CMD

of reported errors. Generalizations such as "NEW modules are
more likely to contain errors than BASE modules" may be ap-

propriate while those such as "the probability is 0.28 that
NEW modules will contain errors" are almost certainly not.

VI. EVALUATION CRITERIA
For each model considered, an "all possible regressions"

search procedure was used to identify the "best" set of one,

two, and three independent variables from the pool ofvariables
available at each stage of program development (Section IV).
This approach was made possible by placing a reasonable limit
on the total number ofvariables considered. Standard statistical
criteria were employed in the process.4 One of these, the coef-
ficient of multiple determination (R2), should be famiihar to
most readers. It may be interpreted as the proportion of varia-
tion in the dependent variable (e.g., CMD) associated with (but
not necessarily caused by) that in the independent variable(s).
Where appropriate, R2 values will be reported for the models
discussed.

VII. RESULTS OF ANALYSIS
The findings are organized according to stage of program

development. For each stage we identify the variables con-

sidered, the relevant data, and the major results.

A. Start ofProgram Design
Only those variables representing the general development

strategy were considered. As defined in Section III, modules
were classified as either NEW, MODIFIED, TRANSLATED, or

BASE. We are interested in seeing whether different strategies
lead to different characteristics of module errors for this stage.
Table II shows the average number of cumulative mnodule de-
fects (CMD) for each category, and Table III shows the average

expected probability of postrelease defects (PAPAR). The
count of modules observed in each category is also given
(count). Note that there are no MODIFIED PL/S modules for

4See, for example, [7, pp. 376-3821.

Product Language BASE NEW MODIFIED TRANSLATED

CMD CaRE coutnt D COURtImD COU)

A PASCAL 4.40 25

BI PL/S 830 127 4.47 126

B2 PU/S 0.43 157 5.07 96

B2(MOD)- PUJS 534 75 4.10 21

B3 PLUS 0.06 123 0.00 5 3.53 130

C BAL 9.0000 43 5.98-- 334

C PL/S 0.40 SO

'hese are MODIFIED modules in B2 which were NEW or TRANSLATED in B1.

"Though the difference between 9.00 and 5.98 peasn large, the asociated
level of significance is low (Q > 25).

319

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 4, APRIL 1985

TABLE III
BASE-NEW-MODIFIED-TRANSLATED MODULE COMPARISONS: PAPAR

Th'Me ue MODIFIED modules in B2 which were NEW or TRANSLATED in B1.

TABLE IV
BEST PREDICTORS: END OF PROGRAM DESIGN AND END OF PROGRAM

CODING

product C, no MODIFIED or BASE modules for products A or

Bi, no NEW modules for product B2, and only five NEW mod-
ules for product B3. The principal findings from Tables II and
III appear below. All reported differences are based on a 0.005
level of significance,5 and reflect comparisons between module
subsets of a given product.

1) As expected, MODIFIED modules (products B2, B3, and
C) and NEW modules (product C) were significantly more error-

prone than BASE modules.
2) MODIFIED Assembly language modules (product C) were

significantly more error-prone than NEW PL/S modules, but
not significantly more (nor less) error-prone than NEW Assembly
language modules.
3) NEW modules (product Bl) were significantly more error-

prone than TRANSLATED modules.
The term "error-prone" as used here refers to both cumula-

tive and postrelease discovered errors (CMD and PAPAR, re-

spectively). The normal strategy of allocating more testing
resources to NEW and MODIFIED modules appears reasonable
(item 1). Even so, Table III shows that the,se modules were

still responsible for the majority of postrelease errors.,
Our finding that NEW Assembly language modules were

neither significantly more nor less error-prone than MODIFIED

Assembly language modules (item-2) appears to be consistent
with that of a recent study by Bagili and Perricone [1], who
studied the number of errors for modules written primarily
in Fortran. This result suggests that the decision to either
modify or rewrite an existing module should not, in general,
be based on the assumption that one approach is inherently
more error-prone than the other. Other factors, such as time
schedule or effort, may be more important regarding this
decision.
In view of our finding that NEW modules were significantly

5Standard nonparametric statistical procedures for testing the signifi-
cance of differences between two or more independent samples were

employed (see, for example, (131). An intuitive interpretation of the
0.005 level of significance is that a difference as great as that observed
should occur purely by chance with a probability no greater than 0.005;
thus, we may conclude with a high degree of confidence that a "real"
difference actually exists.

more error-prone than their TRANSLATED counterparts (item
3), it becomes interesting to ask if this difference holds when
these modules are later modified. To answer this question,
we considered those TRANSLATED modules of product Bl
which were later modified for product B2. Our finding was

that modules that were NEW and later MODIFIED were not
significantly more nor less error-prone than those that were

TRANSLATED and later MODIFIED (row B2(MOD) in Tables
II and III).
While the findings for this stage may well be of use in the

development of general project strategies, it should be noted
that the usefulness of any model based solely on the classifi-
cations considered here will be limited. To illustrate this
point, consider that for non-BASE modules, only about 30
percent of the variance6 in CMD could be accounted for using
these classifications.
Additional results of our analysis will be given for the more

error-prone non-BAsE modules only. Our approach was to
consider individual subsets of NEW or MODIFIED modules for
each of the products studied. By doing so, we were able to
reduce the number of independent variables under considera-
tion at any given points, and thus, allow for a more thorough
evaluation of those measures of particular interest. We also
excluded several "table initialization" modules with abnormally
high 172 and low DE values.7

B. End ofProgram Design

As discussed previously, good estimates for 71 , 7?2, DE, and,
in the case of MODIFIED modules, their change metric counter-
parts, may be available for analysis at this stage. However, since
no such estimates were made during the development of the
products under study, we have made use of the final program
measures only. The metrics found to be the best predictors of
CMD and PAPAR (in terms of R2) are shown in Table IV. A

6RB2 = 0.33, RB3 0.25.

7There were 19 such modules, all from product B. Each had a large
number of constants (e.g., error messages) and few, if any, conditionals.

Product Language BASE NEW MODIFIED 1TANSLATED

PAPAR,coW PA4R,,l c PAPARCO 3COWSFAR C

A PASCAL 032 25

Bi PL/S 0.40 127 0.07 126

B2 PLIS 0.17 157 0.61 96

B2(MOD)' PL/S 0.60 75 0.67 21

B3 PLUS 0.03 123 0.0 5 0:28 130

C BAL 0.3 43 051 334

C PL/S 0.28 50

Product CND PAPAR Subset

A 112 112

B1 DE 2 1

B2 '12 112 2

B3 112 DE 2

C DE % 3

C 1 112 4

1. NEW modules, excluding table initialization modules.

2. MODIFIED modules, excluding table initialization modules.

3. NEW assembly language modules.

4. MODIFIED assembly language modules.

320

SHEN et al.: IDENTIFYING ERROR-PRONE SOFTWARE

discussion of their performance in practical terms will be given
later.
The following were the principal findings for this stage.
1) The number of unique module operands (i.e., variables

and constants), fl2, was the best single predictor, overall.
2) For MODIFIED modules, the nonchange metrics performed

better than the change metrics when considered individually.
3) Regression models which combined a nonchange metric

(such as ?22 or DE) with a change metric (such as AI?2 or ADE)
generally performed better than models which combined
metrics of the same type.
For most subsets, the difference in performance between f72

and DE was small and, in fact, found not to be significant at
the 0.01 level.8 Moreover, we found these measures were
themselves highly correlated. For the Assembly language
modules of product C, 71 accounted for slightly more of the
observed variance in both CMD and PAPAR than did either 7f2
or DE, but again, this difference was found not to be significant.
Our finding that change metrics did not perform well individ-

ually is probably related to the need on the part of program-
mers for some level of overall module understanding before
modifications can be made. In particular, the actual task of
modifying a module is probably simpler, in general, than iden-
tifying the possible implications of that modification. Thus,
mrics which reflect overall mnodule complexity might be ex-
pected to perform better than those_which reflect only the
change itself.
Finally, our finding regarding the relative performance of

combined measures is consistent with an earlier result reported
by Paulsen, Fitsos, and Shen [9]. We consider this an area
deserving further study in the future.

C. End ofProgram Coding-Start ofIntegration Test
At this stage, all metrics derivable from source code analysis

become available for study. These include all the product-
related metrics described in Section IV. We were surprised to
find that the set of best predictors for both CMD and PAPAR
remained unchanged from the previous stage. Thus, Table IV
is used for both. Again, for reasons discussed earlier, our re-
sults are based on the final program measures.
Table IV shows that themeri mains the best overall
Predictor for both C and PAPAR followed closel b

lThis was somewhat surprising in view of earlier work supporting
measures such as N, V, and D [3], [8], [14]. It is also rather
gratifying since, as discussed earlier, reasonable estimates for
712 and DE may be available sooner than for others.

Interestingly, our finding does provide support of sorts for a
much earlier study by Motley and Brooks [6]. By using re-
gression techniques to analyze the error rates for two large
software projects commissioned by the Department of De-
fense, they discovered that of over 50 independent variables
considered, the number of implicitly defined variables and the
number of unconditional jumps were the best single predictors
of errors. The first of these measures is a subset of 712, while
the second is related to DE.

8A test of significance based on Fisher's z' Transformation was used
(see [7, pp. 404-407]).

TABLE V
BEST METRICS AT THE END OF TEST

Product PAPA Subset

A 712

Bt 'q2 I

B2 'q2 2

B3 No. of PTMs 2

C No. ofPTMs 3

C '12 4

TABLE VI
METRIC PERFORMANCE FOR PRODUCT Bl: CmD

Metrics R2 PRED2S MRSI

-. .74 .43 .47
'q2, DE .78 .45 A4

N .72 .45 .48

D. End of Test
The number of PTM's associated with each module is now

added to the set ofavailable independent variables. Only PAPAR
is considered as a dependent variable since the PTM measure

accounts for 60-90 percent of the variance observed in CMD.
The best predictors for this stage are shown in Table V.
Values of R2 were higher for 7X2 than for the number of

PTM's in four of six cases. However, the differences were

generally small (amounting to around ten percent or less of
the observed variance in PAPAR), and were found not to be
significant.

E. Additional Measures ofModel Performance
We now illustrate the performance of some of the metrics

considered by examining statistics related to goodness-of-fit
for one of the products studied. The product selected for this
purpose, B 1, was chosen because of its large size, homogeneity
in language and module types, and completeness in error data.9
Table VI shows the performance in estimating CMD. The

statistics given are 1) R2, the coefficient of determination; 2)
PRED 25, the percentage of estimates within 25 percent of
their observed value; and 3) MRE, the mean magnitude of rela-
tive error, defined as

MRE= 1 X,jnCMD - CMD
CMD

9As discussed in Section VII-B, only NEW modules (excluding,
table initialization modules) were considered in the analysis.

1. NEW modules, excluding table initialization modules.

2. MODIFIED modules, excluding table initializtion modules.

3. NEW assembly language modules.

4. MODIFIED assembly language modules.

321

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-ll, NO. 4, APRIL 1985

predicted errors

Fig. 1. Cumulative error prediction (CMD) using il2 (product Bi).

predicted crros

Fig. 2. Cumulative error prediction (CMD) using Xl2 and DE (prod-
uct Bi).

Figs. 1-3 show the scatter plots of actual versus predicted
module defects (i.e., CMD versus CMD) using 112, 172 and DE,
and N as independent variables.
Consider now a simple scheme for classifying modules into

one of two groups according to the likelihood of their being
associated with postrelease errors. IfPAPAR > 0.5, classify the
module as high risk, otherwise, low risk. Using this scheme, 75
percent of the modules in Bl will be classified correctly using
112 as the independent variable. Using N as the independent

predicted errors

Fig. 3. Cumulative error prediction (CMD) usingN (product B1).

variable, 71 percent will be classified correctly. Finally, if the
number of PTM's is used as the independent variable, 72 percent
will be classified correctly. Note that these values reflect the
goodness-of-fit of these models with the data used to develop
them, and are therefore higher than would be expected if the
models were applied to new data.
Since the differences in performance for N, X12, DE, and the

number of PTM's was typically small for the products studied,
the issue of how soon these metrics can be accurately estimated
becomes quite important.

VIII. THE DENSITY OF DEFECTS

We have used two indexes of module error-proneness: the
count of discovered defects (CMD) and the occurrence of one
or more postrelease discovered defects (PAPAR). Each of the
metrics found to be a good predictor of these measures was
also found to be related to module size. In general, larger
modules simply tend to have more errors than smaller ones.
For this reason, "error density"-usually defined as the number
of defects per 1000 LOC-has been widely used as a "size-
normalized" index of quality (see, for example, [1]). Implicit
in this notion is the assumption that error density and module
size are unrelated. Our work, however, suggests a somewhat
different conclusion. Consider, for example, the plot of
CMDIN versus N for product Bl as shown in Fig. 4.
The observable trend, that there is a higher mean error rate

in smaller sized modules, is consistent with that discovered by
Basili and Perricone [1]. They attributed the trend to the
distribution of interface errors, the extra care taken in coding
larger modules, and the possibility of undetected errors in
larger modules.
Whatever the reasons, our finding that bo0 + b IN is a better

model for CMD than is b1 N, is consistent with this result.

322

SHEN et at.: IDENTIFYING ERROR-PRONE SOFTWARE

d +
C

lL I
Fori

n4

y

CMD #t °+b

+

+ +
+ 4+ * 4+
+ 44.4+

a g eFig. 4. Fuh4er analysis ofor pductsoeb b4N

thtthen mnmmsz bynhcerror density become

bo4 44b

reasonably be considered unrelated to module size was N=f
2500oorarproximately 500 lines of code. Only 24 (out of
108) modules were this large or larger. Analysis of products
B2 and C produced similar results.
We conclude,ntherefore, that error density is generasly a poor

size-normalized index of program quality.

IX. CONCLUSIONS
Based on our analysis of three program products and their

error histories, we have discovered that simole metrics related
to the am'ount of data (i?2) and the structural complexity (DE)
of programs may be useful in identifying at an early stage
those modules most likely to contain errors. This finding pro-
vides an empirical basis for the use of these measures in tar-
geting certain modules for early or additional testing, in order
to increase the efficiency of the'defect removal process. At-
ternative measures such as module size (e.g., N) or initial test
results (e.g., number of PnMs) have been shown to offer little
potentialmformimproving the 'stritegy. Our fdigtngs also suggest
tit it may be beneficial to promote programming practices
related to modularizationrthat discourage the development of
either extremely large or extrehmely smae modules.
Our study of error density shows that this measure istin

general, a poor size-normalized index of program quality. Its

use in comparing the quality of either programs or program-
mers without regard to related factors such as complexity and
size is ill-advised.

ACKNOWLEDGMENT
The authors wish to thank T. Franciotti, P. Hutchings, and

H. Remus of IBM for their support of this study. Thanks also
to K. Christensen and G. Fitsos, also ofIBM, for their contribu-
tions during the initial phase of the project. B. Dunsmore of
Purdue University made valuable suggestions during the final
phase.
Finally, we are indebted to several members of the develop-

ment and testing teams for products A, B, and C, without whose
cooperation and concern for quality this research would not
have been possible.

REFERENCES
[1] V. R. Basili and B. T. Perricone, "Software errors and complexity:

An empirical investigation," Commun. ACM, vol. 27, no. 1, pp.
42-52, Jan. 1984.

[2] K. Christensen, G. P. Fitsos, and C. P. Smith, "A perspective on
software science," IBMSyst. J., vol. 20, no. 4, pp. 372-387, 1981.

[31 A. R. Feuer and E. B. Fowlkes, "Some results from an empirical
study of computer software," in Proc. 4th Int. Conf Software
Eng., 1979, pp. 351-355.

[4] M. H. Halstead, Elements of Software Science. New York:
Elsevier North-Holland, 1977.

[51 T. J. McCabe, "A complexity measure," IEEE Trans. Software
Eng., vol. SE-2, pp. 308-320, Dec. 1976.

[61 R. W. Motley and W. D. Brooks, "Statistical prediction of pro-
gramming errors," Rome Air Devel. Cen., Griffiss AFB, NY,
RADC-TR-77-175, May 1977.

[71 J. Neter and W. Wasserman, Applied Linear Stdtistical Models
Homewood, IL: Irwin, 1974.

[8] L. M. Ottenstein, "Quantitative estimates of debugging require-
ments," IEEE Trans. Software Eng., vol. SE-5, pp. 504-514,
Sept. 1979.

[91 L. R. Paulsen, G. P. Fitsos, and V. Y. Shen, "A metric for the
identification of error-prone software modules," IBM Santa
Teresa Lab., San Jose, CA, Tech. Rep. TR-03.228, June, 1983.

[10] H. Remus, "Planning and measuring program implementation,"
in Proc. Symp. Software Eng. Environments, Lahnstein, Germany
(Gesellschaft fuer Mathematick und Datenverarbeitung). Am-
sterdam, The Netherlands: North Holland, 1980, pp. 267-279.

[11] V. Y. Shen, S. D. Conte, and H. E. Dunsmore, "Software science
revisited: A critical analysis of the theory and its empirical sup-
port," IEEE Trans. Software Eng., vol. SE-9, pp. 155-165, Mar.
1983.

[12] M. L. Shooman, Software Engineering. New York: McGraw-Hill,
1983.

J[13] S. Siegel, Nonparametric Statistics for the Behavioral Sciences.
New York: McGraw-Hill, 1956.

[14] C. P. Smith, "Practical applications of software science-The de-
tection of error prone code," IBM Santa Teresa Lab., San Jose,
CA, Tech. Rep. TRO3.184, Feb. 1982.

[15] A. S. Wang, "The estimation of software size and effort: An ap-
proach based on the evolution of software metrics," Ph.D. dis-
sertation, Dep. Comput. Sci., Purdue Univ., W. Lafayette, IN,
Aug. 1984.

Vincent Y. Shen received the Ph.D. degree in electrical engineering from
Princeton University, Princeton, NJ, in 1969.
He joined Purdue University, W. Lafayette, IN, in February 1969, and

is currently an Associate Professor of Computer Science. He was a Visit-
ing Professor at National Tsing Hua University, Taiwan, Republic of
China, during the 1975-1976 academic year. He was a Visiting Faculty

323

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-1I, NO. 4, APRIL 1985

Member of IBM's Santa Teresa Laboratory dur-
ing the summers of 1982 and 1983. He has
published papers in switching and automata
theory, computer graphics, operating systems,
database, and most recently, software engineer-
ing and software metrics.

Tze-Jie Yu received the B.S. degree in electrical
engineering from National Taiwan University in
1979, and the M.S. degree in computer science
from Purdue University, West Lafayette, IN,
in 1983.
From 1981 to the present, he has been a Ph.D.

candidate and Research Assistant at Purdue
University. He worked for IBM's Santa Teresa

_~ Laboratory as a Systems Analyst during the
summer of 1983. His research interests include
software quality assessment, software tools,
and software cost modeling.

Mr. Yu is a member of the Association for Computing Machinery and
its Special Interest Group on Software Engineering, and a member of
the IEEE Computer Society.

Stephen M. Thebaut (S'79-M'83) received the
BA. degree in mathematics from Duke Uni-
versity, Durham, NC, and the M.S. and Ph.D.
degrees in computer science from Purdue Uni-
versity, West Lafayette, IN, in 1979 and 1983,
respectively.
He joined the Department of Computer and

Information Sciences, University of Florida,
Gainesville, FL, as an Assistant Professor in
1983, and was supported by an IBM Postdoc-
toral Research FeUowship during the 1983-

1984 academic year. His current research interests include software
reliability, program maintenance, and the large-scale software devel-
opment process.

Prof. Thebaut is a member of the Association for Computing Ma-
chinery, the IEEE Computer Society, and the 356 Registry.

|, Lorri R. Paulsen received the B.S. degree in
mathematics from Wagner College, Staten Island,
NY, in 1968.

- She joined IBM in 1968, and is currently a
Program Development Manager for IBM General
Products Division at Santa Teresa Laboratory,
San Jose, CA. During her IBM career, she has
been associated with systems design and de-
velopment, working on the ASP Version 3 and
JES3 products. In 1979 she became involved
with the measurement of programmer's produc-

tivity, which led to her research with Software Science metrics and the
prediction of error-prone modules. She is currently managing the de-
velopment of software engineering tools to assist with the design and
implementation ofIBM products.

Translating SQL Into Relational Algebra: Optimization,
Semantics, and Equivalence of SQL Queries

STEFANO CERI AND GEORG GOTTLOB

Abstract-In this paper, we present a translator from a relevant subset
of SQL into relational algebra. The translation is syntax-directed, with
translation rules associated with grammar productions; each production
corresponds to a particular type of SQL subquery.
The translation is performed in two steps, associated with two differ-

ent grammars of SQL. The rfrst step, driven by the larger grammar,
transforms SQL queries into equivalent SQL queries that can be ac-
cepted by a restricted grammar. The second step transforms SQL
queries accepted by the restricted grammar into expressions of rela-
tional algebra. This approach allows performing the second step, which
is the most difficult one, on a restricted number of productions.
The translator can be used in conjunction with an optimizer which

operates on expressions of relational algebra, thus taking advantage of a

Manuscript received June 13, 1984; revised September 6, 1984. This
work was supported in part by a grant from Data Base Informatica.
The authors are with the Dipartimento di Elettronica, Politecnico di

Milano, 1 20133 Milano, Italy.

body of knowledge on the optimization of algebraic expressions. More-
over, the proposed approach indicates a methodology for the correct
specification and fast implementation of new relational query lan-
guages. FinaUy, the translator defines the semantics of the SQL lan-
guage, and can be used for the proof of equivalence of SQL queries
which are syntactically different.

Index Termns-Program translation, query equivalence, query lan-
guages, query optimization, relational algebra, relational database
model, SQL.

I. INTRODUCTION
T HE use of the relational model and languages is becoming
Tmore and more popular for the development of new data-

base management systems. Formal languages, such as the rela-
tional calculus and algebra, have been proposed by Codd [11

0098-5589/85/0400-0324$01.00 © 1985 IEEE

324

