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rowing awareness that software en- 
gineering needs to improve its G products and incorporate more 

rigor into its processes has recently led to 
an increased interest in metrics. It has 
long been recognized that the ability to 
measure a process or product increases 
the understanding of i t  As Lord William 
Kelvin, the British mathematician and 
physicist, said, When you can measure 
what you are speaking about, and express 
it in numbers, you know something about 
it.” On the other hand, his contemporary, 
the biologist Thomas H. Huxley, warned, 
“As the grandest mill in the world will not 
extract wheat flour from peascods, so 
pages of formulas will not get a definite 
result out of loose data.”’ This was a 19th- 
century formulation of “garbage in, gar- 
bage out.” 

With this caveat in mind, consider the 
value of two measures: module size and 
error density. 

Size is the oldest measure of software 
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complexity, which is believed to be a 
major driver of the maintenance effort. 
While more sophisticated complexity 
measures have been devised, no universal 
tool has emerged, and size - defined 
here as source lines of code -continues 
to be popular.2 Although there are many 
problemswith this metric, such as the def- 
inition of a source line and the difficulty 
of comparisons across languages or across 
programming styles, its popularity is justi- 
fied on the bases of ease of determination 
and a track record of success in effort esti- 
m a t i ~ n . ~ , ~  

Error density is popularly believed to be 
directly related to program size. James 
Martin has said that there is a dispropor- 
tionate increase in complexity with 
increasing size, implying a similarly dis- 
proportionate increase in errors.’ Unfor- 
tunately, I could find no published study 
to support this view, although TA. Thayer 
and colleagues6 have hinted at the possi- 
bility. Nevertheless, this direct relation- 
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ship seems to be what you would intu- 
itively expect. As a module increases in 
size, it becomes more difficult for the p r e  
grammer to manage the increasing num- 
ber of details, which leads to the genera- 
tion of errors. 

However, a higher error density oc- 
curred in smaller modules in studies by 
Vincent Shen and colleagues and by 
Victor Basili and Barry Perricone.8 Shen 
and colleagues found that an inverse rela- 
tionship existed up to about 500 lines. Be- 
yond that they found no relationship, but 
they had a small sample of modules larger 
than 500 lines. They studied software 
written in Pascal, PL/S, and assembly lan- 
guage. Basili and Perricone examined 
Fortran modules sized mostly at fewer 
than 200 lines. They attributed the inverse 
relationship primarily to the predomi- 
nance of errors at the interfaces between 
modules, such as incompatible usage of 
common data. These interface errors 
were spread equally across all modules re- 
gardless of size and thus represented a 
higher density in smaller modules. Other 
possible causes they noted were that most 
modules examined were small (causing 
bias), that extra care may have been taken 
in coding larger modules, and that there 
may have been undetected errors in 
larger modules. 

My colleagues at Unisys and I had an o p  
portunity to contribute to this area, hav- 
ing just completed the development of a 
large project written in Ada. The project 
team kept error reports, and the many 
modules ranged greatly in size. We ana- 
lyzed module size to see if there was a rela- 
tionship with module quality. We used 
error density - defects per thousand 
lines - as an inverse measure of quality: 
the lower the error density, the higher the 
quality. 

Method 
The object of our study was the Ada soft- 

ware for the command and control of a 

January 1990 

military communications system. It was 
developed by a team of about 17 experi- 
enced programmers to whom Ada was a 
new language. 

We computed the error density for each 
of the 362 modules, which totaled 114,000 
lines. (Lines are defined here as noncom- 
ment lines. There were more of these in 
the Ada software studied than there were 
Ada statements, since a statement often 

The direct relationship 
between number of 

errors andprogram size 
seems intuitive. But 

other studies also showed 
that small pmglams are 

errotymrone. Why? 

spanned more than one line. To make 
these results more comparable to pub- 
lished work on error density, we converted 
the statement count to lines by making a 
manual count of a representative sample 
of modules to determine the ratio of ac- 
tual lines to Ada statements. We then a p  
plied this factor, 1.77, to the statement 
counts determined by an automated 
count of semicolons.) 

The project chose to treat Ada packages 
-rather than procedures, functions, sub- 
programs, or tasks - as modules because 
the package is the basic structuring unit of 
the Ada language and because this soft- 
ware was developed on a package basis. 

The data are based on problem/change 
reports written during the test and inte- 
gration phases - beginning immediately 
after code and unit testing and ending 
with the delivery of the product to the 
customer. Error records for the period be- 

fore thiswere not kept and do not yet exist 
for the period after it. 

The problem/change reports, origi- 
nally numbering 696, were reduced to 491 
by eliminating those that were not true 
software errors. Those eliminated in- 
cluded changes required by changed re- 
quirements, document changes, and 
errors caused by hardware. The p r o b  
lem/change report count was then fur- 
ther reduced by four to 487 by eliminating 
those with incomplete information. 

An error here is defined as a package 
being changed because of a p r o b  
lem/change report, so if four report er- 
rors were made for a package, the error 
count for that package is four, although 
the number of lines of code changed may 
well be greater than four. The number of 
errors found per package ranged from 
zero to 39. The average was two errors per 
package. The average package size was 
316 lines, with a range of four to 5,160 
lines. Of the 362 modules in the study, 137 
(38 percent) had at least one error. 

ReSUttS 
Figure 1 shows a scatter diagram of the 

resulting error densities plotted with size 
as the independent variable. The data are 
from the packages with nonzero error 
densities only. This diagram bears a 
striking resemblance to one published by 
Shen and colleagues. There is a regular 
pattern of declining error density with in- 
creasing size, but the regularityappears to 
be partly an artifact of the discrete nature 
of the data. The empty area in the lower 
left represents the impossible case of hac- 
tional errors. The lower limit of one error 
per module manifests itself as an orderly, 
curving row of data points. To highlight 
this, Figure 2 shows the same data con- 
verted to log (base 10) values. The curve 
for oneerror modules is here a straight 
row; you can discern similar rows for two- 
error modules and so on. 

However, to characterize the data com- 
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Fmre 1. Error density versus the size of Ada packages for those packages that had 
errors. 
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R e r e  2. Log error density versus log size for the data in Figure 1. 
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Figure 3. Error density versus size for all packages (those in Figure 1 plus those with no 
errors) in bar-chart format. The standard error of the mean represented by each bar is 
shown at the top of the bar. 
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pletely, the error-free modules must be in- 
cluded. This of course produces many 
points along the x axis. You can perform 
no significant curve fitting on these data, 
so we used a bar graph to show the average 
e r ro r  density found in all modules 
grouped by size (Figure 3). We chose the 
size categories by equal log spacing of the 
number of lines. The numbers on the x 
axis represent the largest number of lines 
in the collection of modules represented 
by the bar above. For example, the bar la- 
beled “100”represents moduleswith 64 to 
100 lines, and the bar labeled “158” repre- 
sents 101 to 158 lines. The values on top of 
the bars show the standard errors of the 
values represented by the bars. 

This graph shows the pattern postu- 
lated above: falling error density for small 
modules followed by rising error density 
for larger modules, with an apparent opti- 
mum size of 200 to 250 lines. Table 1 shows 
detailed statistics for the data of Figure 3. 

~ Cornparingstudies ’ This result lends support to the hypoth- 
esis that there is an optimal, intermediate 
module size. This might be dubbed the 
Goldilocks principle after the children’s 
fable and suggests that software designers 
may decrease how error-prone their prod- 
ucts are by decomposing problems in a 
way that leads to software modules that 
are neither too large nor too small. 

Differences. Basili a n d  Perricone’s 
study showed a declining error rate, with 
the lowest rate occurring in the largest cat- 
egory (code larger than 200 lines). The 
main differences between their results 
and our results are in the sample size of 
large modules and the method of count- 
ing lines. Basili and Perricone had only 
three modules larger than 200 lines, while 
half the modules jn our study were that 
large. Also, Basili and Perricone counted 
only executable lines (in Fortran) and not 
common data statements, while our study 
counted both declaration and body lines 
of source code (in Ada). (Neither study 
counted comment lines.) Therefore, 
their  line counts  may have under- 
estimated size when compared to our 
study. Another difference is the part of the 
life cycle studied: Basili and Perricone 
covered the coding through the mainte- 
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Table 1. 
Errordensity statistics for packages grouped by size. 

Groups were chosen for equal log spacing of source lines. 

Package maximum Log,, maximum Range of Number of Mean 
source lines source lines source lines packages error density Standard error 

63 1.8 4-62 93 5.4 1.5 
100 2.0 64-97 39 4.9 1.4 
158 2.2 103- 154 52 3.4 0.9 
25 1 2.4 161-250 53 1.8 0.5 
398 2.6 25 1-397 46 5.2 1.1 
630 2.8 402-625 31 5.6 1.9 

1 ,ooo 3 .O 65 1-949 22 6.8 1.3 
>l,OoO >3.0 1,050-5,160 26 8.3 1.4 

nance phases, while our study covered 
only the integration and test phases. 

Shen and colleagues, who also found a 
declining error rate with size, studied a 
compiler written in PL/S, a derivative of 
PL/I. They showed this inverse relation- 
ship to hold up to a size of about 500 lines. 
They did not specify their definition of 
lines. The lifecycle phases they studied 
were integration through maintenance. 

Thayer and colleagues studied a large 
command and control system written in 
Jovial 54, an Algol derivative, and found no 
correlation between module size and the 
density of the errors detected during pre- 
operational testing. Preoperational errors 
constituted the bulk of errors studied. 
However, limited data on operational er- 
rors suggested a higher error density in 
routines of 1,000 to 2,500 lines. 

But, given all the differences in phase, 
language, application, and measuring 
technique, the surprising outcome is the 
concordance of results among studies. 

Explaining the curve. You can view the 
shape of the graph of error density versus 
size of all modules as an overlay of two 
phenomena. 

The reason for the rising tail is intuitive: 
Complexity increases with module size, 
inviting errors. There is a limit to the 
amount of code a programmer can hold 
in his immediate frame of attention. 
When the module size exceeds this, errors 
of oversight are more likely. Thus, the ris  
ing tail of the curve is understandable. 

However, the initial falling portion of 
the curve seems to be counterintuitive. 
The scatter graph of error density versus 
size for modules that had at least one 
error shows that an artifact of discrete 
data contributes to the impression of fall- 
ing error density. Only by including the 
error-free modules do  you get a true pic- 

ture, but even then the phenomenon of 
falling error density persists. 

Two possible reasons are related to tes 
ting. When just one part of a module is 
tested, other parts are to some degree also 
tested because of the connectivity of all 
parts. Thus, in a larger module, some 
parts may get some free testing as testing 
proceeds through the early phases that 
precede error reporting. Or perhaps the 
larger modules contain undiscovered er- 
rors because of inadequate testing of all 
paths. Another possible cause of falling 
error density is that interface errors tend 
to be evenly distributed among modules 
and, when converted to error density, they 
produce larger values for small modules. 

An interesting analogy is a study by Rajiv 
Banker and Chris Kemerer, who exam- 
ined software quality and size on a differ- 
ent scale, based on software projects as a 
whole rather than on software modules? 
They examined the economy or produc- 
tivity of many software projects and re- 
lated this to project size. The result was 
that some investigators reported increas- 
ing economy with increasing size, while 
others reported decreasing economy with 
increasing size. 

Banker and Kemerer reconciled these 
conflicting results with a hypothesis that 
said for any environment there is an opti- 
mal product size. For lesser sizes there is 
rising economy, and for greater sizes there 
is declining economy. They attributed the 
rising economy primarily to the spreading 
of fixed overhead; they attributed the de- 
clining economy to proliferating commu- 
nication paths. 

There appears to be a similarity between 
this phenomenon and the module-based 
data reported earlier. The futed overhead 
of the project is comparable to the rela- 
tively constant factor of interface errors in 
the modules. While the overhead is 

spread over the components of the proj- 
ect, the interface errors are spread over 
the lines of code when converted to error 
density. On the declining side of the econ- 
omy curve, the proliferating communica- 
tion paths (human) of the project are 
clearly analogous to the proliferating 
communication paths (computational) 
of the module. 

We thus propose a synthesis of the two 
views of module error density into one 
larger view that is analogous to the view 
Banker and Kemerer put forth for proj- 
ect-based data. This new view is one of fall- 
ing error density, followed by rising error 
density for increasing module sizes. This 
provides a framework for viewing the sur- 
prising results of Shen and colleagues and 
of Basili and Perricone as credible phe- 
nomena. 

Ada peculiarities. Comparing this study 
with others, no result that might be uni- 
quely attributable to the Ada language is 
evident. Given the many error-reducing 
features ofAda- data abstraction, strong 
typing, information hiding, generics, and 
dynamic binding-you might expect that 
error characteristics, including the pat- 
tern of error density versus size, would be 
different for this software. The Ada com- 
piler detects certain classes of errors that 
can persist through testing in other lan- 
guages. If the high error density of small 
modules is due to interface errors, this 
should be lower for Ada software because 
the compiler checks for some of this. 

However, although the types of errors 
may be different, their overall distribution 
by module size does not conflict with what 
little is known about error density in con- 
ventional software. But the newness of 
Ada to the development team may have 
skewed the results in some way not yet un- 
derstood. 
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ur results and those of others suggest a new view of error 
density: that it declines as module size increases up to 0 some optimal size, beyond which error density rises with 

size. Our study of a large Ada project shows this optimal size to be 
about 225 lines. Two studies done with other languages else- 
where suggest optimal sizes of 500 and more than 200 lines. Un- 
doubtedly, this optimal size will vary depending on language and 
style, but we postulate the general phenomenon of falling and 
then rising error density as related to module size as a universal 
programming phenomenon. 

Based on what is known so far about error density and size, “the 
smaller the better” is not necessarily good advice to the module 
designer. On the other hand, extremely long modules should 
probably also be avoided. The middle road of perhaps 200 to 500 
lines, depending on the project, will generally produce the low- 
est error density and the most maintainable code. 

The software tester is well advised to give adequate attention to 
testing modules of either extreme in size. The software main- 
tainer may want to give more weight to considerations of rede- 
signing and rewriting such modules. 

There has been little investigation on either error density or 
module size. More insight will be gained when data are analyzed 
by phase and according to error type. Other data, such as time 
spent in correction and testing and the number of lines changed, 

could be used to refine the understanding of the relationship 
between error density and size. There is a notable lack of such 
data for Ada projects and for projects as large as the one studied 
here. Future studieswill provide a basis for better understanding 
of the significance of module size in particular and more reliable 
software in general. *:* 
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