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1. Scenario: The Nature of Largeness 

In his survey paper on software engineering [8] Barry Boehm observes 

that "... as we continue to automate many of the processes which control our life¬ 
style — medical equipment, air traffic control, defense systems, personnel records, 

bank accounts - we continue to trust more and more in the reliable functioning 
of this proliferating mass of software". 

This very brief statement summarizes the intrinsic environmental 
circumstances that have given rise to the large-program phenomenon and the 

associated software crisis. Mankind today, as individuals, as nations, as a society 

places more and more reliance on the mechanization, using computers, of an 
increasing variety of applications. The latter interface with, control and are 

controlled by, ever more complex human organizations and activities; and all 

interact with one another within the operational environments, often in an 

unpredictable manner [17], The computing mechanisms are embodied in an 

increasing variety of equipment of ever greater power and speed. The resultant 
complexes of machines and their application-oriented and system-oriented 
programs or software, are conceived, created and maintained by people 

increasingly remote from the application, from the operational environment, from 

the mathematical and programming skills demanded of early practitioners, and 
from the management skills required by the controllers of human activities in the 
days before automation. 

In the early days of computers a programmer, usually a mathematician, 

scientist or engineer, was presented with a problem. He was able to identify 

algorithm(s) for its solution. The details of the program subsequently written 

would depend on his choice of algorithm, on his skill as an analyst and 
programmer and on the particular set of constraints arising out of the 
environment in which the program was written and out of that in which it was 
subsequently to be executed. 

The application developer might recognize that in certain circumstances 
the preferred solution and its program embodiment would fail; would produce a 
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result that was at best less than optimum, at worst incorrect. Failing such 

programmer perception one would expect that, at best, the machine would detect 
the circumstances in execution (for example an out-of-bounds number). At worst 
the computation might complete and the error would be detected subsequently, 
with consequences that could range from the inconsequential to the very costly. 
Whatever the case the exceptional was taken care of by human intervention. 

With one problem solved the individual or group pursuing some 
responsibility would encounter other areas ripe for computerization. Thus in 
appropriate instances (and sometimes in not so appropriate instances) programs 
would be written with even more of the overall activity becoming computer- 

based. But the human remained as the link between the separate computations. 

Still other humans were responsible for administrative tasks such as scheduling 
the various runs, the allocation of computing and other resources to successive 
applications. 

All those involved in the processes described above soon realized the 

potential for expansion through encapsulation; the binding of the separate 
activities into a single larger program. The potential benefit was clear: less 

human effort (man is a lazy animal); increased speed and cost-effectiveness 
through the elimination of human intervention which must inevitably involve 
loss of machine resources; increased reliability (sic) of the machine and of 
machine processes. So why not let the program take care of all exceptions; why 
not let the program recognize and sequence the succession of activities; why not 
let the computer handle the administrative problems of language transformation, 
resource scheduling and allocation, information storage, communication? 
Encapsulate as much as possible within a single program structure. Create 
comprehensive programs. Add bells and whistles. And so it was done. More 

and more was included. The large program had arrived. 

The adjective large as used here, the concept and attribute of largeness 
that we now develop and characterize, is not intended to reflect the number of 
instructions or modules comprising a program. Nor do we refer to the size of its 

documentation, or to the program’s resource demand during execution. We do 

not refer to the program’s resource demand during execution. We do not even 

intend to emphasize the wealth of function contained within it. There is always 
a level of description at which the function is recognized as an entity, a payroll 
program, an operating system. The amount of functionality is relative to a level 
of discourse. 

All the above indicators of program size can be expected to increase as a 
program grows larger in the sense to be described, but the root cause of the 
characteristics we shall identify is related to the concept variety. A program is 
large if its code is so varied, so all-embracing that the execution sequence may 
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adapt itself to the potential variety of its operational environment: the specific 

input, the requested output, and the environmental conditions in the executing 

system and in the user environment during execution. A program is large if it 

reflects within itself a variety of human interests and activities. And if it does 

then it will essentially lie beyond the intellectual grasp of a single individual. It 

will require an organized group of people to design, implement, maintain and 

enhance it. And it is the communication between the variety of activities 

implemented in the program, the communication within the implementing 

organization, the communication between the implementors and their product 

and finally the communication between all these and the operational 

environment that lead to the emergence of the largeness characteristics which we 

discuss in much of the remainder of this chapter. 

2. Phenomenology’ Measurement in Software Engineering 

The preceding section has related largeness to variety, the degree of 

largeness to the amount of variety. The variety is that of needs and activities in 

the real world and their reflection in a program. But the real world is 

continuously changing. It is evolving. So too are therefore the needs and 

activities of society. Thus large programs, like all complex systems, must 

continuously evolve. Alternatively they can only fall into obsolescence and 

uselessness [5,18]. 

We discuss the continuous evolution of large programs, perhaps the most 

fundamental of their characteristics, in a later section. It is introduced here to 

provide a focus for the data and data interpretation that is first presented to 

demonstrate that our discussion represents reality and not abstract philosophical 

musings that have little relevance in the hard-nosed world of applied software 

engineering. 

Moreover, we hope to convincingly demonstrate that the identified 

characteristics are intrinsic to the use of computers. If this is accepted, two 

important conclusions follow: firstly, until it can be changed, we must accept the 

world - in this case the programming environment - as it is and not treat it as 

we would like it to be. Limitations that arise from characteristics we do not fully 

understand, far less control, must be accepted unless and until they can be 

changed. Secondly, we can only hope to change and fundamentally improve the 

software engineering environment - the world we work in and the products we 

create and maintain - when it is understood; when its characteristics and the 

causes or mechanisms that underlie them are identified. 

This problem of system understanding and mastery is not new. All of the 

natural sciences have been built and continue to develop on the basis of a 
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common methodology. The universe or system of interest is observed. Gross 

entities, patterns of behavior, are recognized and global measurements made, 

until regularities, patterns, trends, invariances are observed. Only then are 

models and supporting hypotheses created. These in turn form the starting 

point for a developing theory that relies on prediction, experimentation and 

further observation for the gradual evolution of the theory. In parallel, there 

will emerge an experimental and applied science which, in response to societal 

needs and efforts, leads to an engineering technology. 

That is, the initial development of any science is phenomenology-based. It 

is not in the first place built, as is mathematics, on abstract concepts, axioms, that 

are gradually developed into a total structure of models that pass tests of 

reasonableness and elegance. A formal framework and axiomatic theory follow 

when basics are clear, when it is known what is fundamental or critical, and 

what is fortuitous. Indeed even mathematics itself has developed from 

observation of relations in the real world. Thus the study of software 

engineering too can benefit from phenomenological studies. The topic has arisen 

because of bitter experience in developing and maintaining large systems. 

Hence, we are concerned about a more precise characterization of large systems. 

We must begin by providing some initial data that can set the scene. 

3. Some Data: Traditional Indicators 

A first indication of the magnitude of the phenomenon may be obtained 

from data and forecasts on programming expenditure and the programmer 

population. Table I presents a fairly recent projection of trends in the software 

industry [34], It projects an expenditure growth by a factor of two every five 

years from 27. of the United States GNP in 1970 to over 207. by 1995. Table II 

from the same source indicates the expected growth in programmer population. 

Note the implied decline in the number of programmers per installed computer 

as indicated in column four. We question however whether the projection really 

takes into account the proliferation of microcomputers or the large program 

characteristics that form the theme of this chapter. Thus the actual growth of 

the programmer population may well be larger than that projected in the table. 

In any event, the magnitude of the educational and organizational problems in 

the management of programming projects arising from even the indicated 

growth is clear. 

We have been unable to uncover statistics that indicate how expenditure 

and programming effort have been divided up between small individual 

programs - whether application or system - and what we shall classify as large 

programs or program systems. 
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Table III provides data for a series of systems that are typical of their 

respective functional areas. The reader will be well aware from his own 
experience that this small list of "large” programs could be multiplied many 
hundreds of times. For each system we give a size measure in statements 
(instructions plus comments) for one release, where each release corresponds to a 
version of the system as it is made available to the end-user community. The 
age of the system at release time is measured from first release to the end-users. 

Manpower data is notoriously difficult to obtain. Moreover, data 
definitions and mode of collection differ from organization to organization. Yet 
it seems desirable to provide some indicator of the effort that goes into software 
development and maintenance [4]. We found on several systems data pertinent 

to the number of modules modified between consecutive releases. This number 

divided by the length (measured in days) of the inter-release interval yields then 

a convenient normalized measure of effort: the modules handled per day. In 
earlier publications [5,20] we have shown how maintenance effort remained 
constant at about II modules per day handled, over the life time of the IBM 

OS/360 (370) operating system. The corresponding figure for DOS (also 
constant) was about six. A major military stock control system, intermediate in 

size between OS/360 and DOS/360, for which we have recently been able to 
study data, experienced a constant module handle rate of about eight per day. 
For another manufacturer’s OMECA operating system a rate of about 0.8 
modules (of a different size) handled per day was observed over a period of four 

years. Finally, in the banking application system of Table III the rate of making 
changes appears to have been constant at about 0.75 changes per day over a 
three-year period We hypothesise that this essentially stable work-input rate, 

which in each instance appears not to have changed despite improvements in 
languages and methodologies used and changes in resources applied, will be 
found to be an almost universal feature of the programming environment. 

With this observation it becomes clear why productivity is so difficult to 

define or measure in software engineering. It does not represent a meaningful, 

controllable parameter in the classical, industrial sense, but it is determined by 
global system and environmental properties that, at present, lie outside our 
experience, understanding, or control. Nevertheless in Table IV we provide an 

illustration of the programming rates achieved. The variability as a function of 

program type is also well illustrated by the data which shows that the 
programming rate for the structured and relatively simple language processor is 
some four times as high as it is for the much more complex control programs. 

We do not here attempt to analyze this data further. Clearly, the methodology of 
global observations we have outlined in the previous section must be applied 

systematically over a wide data space to achieve understanding and meaning in 

the definition, measure and prediction of programmer productivity. 
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More varied data about a collection of independent programs developed in 

a large software house is given in Table V. We draw particular attention now 

to the large volume of documentation and to the varied ratio of pages of 

documentation per kiloline of code. A similar variability is found in the size of 

the project as measured by the average number of personnel, and in project 

duration. The table thus illustrates the difficulty of making general statements 

about any aspect of programs and the programming process. This impression is 

reinforced by Table VI which shows the ranges of some project and program 

parameters for the products of a different software organization involved in 

contract programming over a period of several years. 

The present section has concentrated on providing some raw data that is 

intended to give the reader a feel for the numbers that arise when large 

programs and large programming projects are observed and measured. This 

data does not appear to provide any general measures of the programming 

process, or of large system characteristics. We now proceed to analyze more 

systematically the nature of large programs and of the process by which they are 

created and, as we shall see, continuously maintained and enhanced. 

4. Variety: Change and Growth 

There does not, at present, exist a general system theory or design 

methodology for complex systems. There is in fact some doubt whether a 

complete theory can ever be totally developed or discovered [17], Nor are there, 

at least in the realm of computer software, systematic and complete methodologies 

for system specification and design. Even with the most meticulous requirements 

analysis, design and implementation process, the product as first released to its 

users will not, in general, possess precisely those functional characteristics and 

properties expected or desired in the application and user environment. The 

systems will require correction and modification after installation. 

Moreover, once installed, the user invariably finds it opportune to use the 

system differently or for a different purpose than that originally conceived. That 

is, use of the system will suggest functional modification. Meanwhile hardware 

technology will be developing. Manufacturers are continuously able to develop 

new or improved processors and devices that offer the opportunity for cost 

reduction or performance improvements for greater cost-effectiveness. But 

exploitation of new usage patterns, new application technologies, new hardware, 

all require the further modification and development of program support. And 

once operational the modified hardware/software complex can again not be 

entirely satisfactory, while once again offering still more opportunities for 

development. So the programs are again changed and the evolutionary cycle 

goes on. Continuing evolution, the outcome of the mutual stimulation of system 
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and environment, is an intrinsic property of large systems; a property that may 
be formalized in a Law of Continuing Change [5,18,21a]: A system that is used 

undergoes continuing change until it is Judged more cost effective to freeze and 

recreate it. 

4.1. Variety Generated by the Desire to Perfect: Continuing Enhancement 

The property of continuing evolution is possessed by all complex systems, 
more particularly all artificial systems [35] created and manufactured by man. 

Software systems, however, suffer one attribute that complicates the process and 
leads to a further property, that of continuing modification of the old. Physical 
systems implemented in hardware, an automobile, an airplane, an atomic reactor 
evolve through the emergence of newly constructed entities that are redesigned, 
hopefully improved, versions of older creations. While attempts may be made to 

modify an existing artifact for experimental purposes, completion of the redesign 

process leads to the construction of an entirely new instance. The system, much 

as biological systems, evolves over successive generations. With software systems 

on the other hand (and to some extent in socio-economic systems such as cities or 
a transportation system), it is possible and appears more economical, simpler, 

faster, and in general more expedient, to change and evolve the system gradually 
through the addition, modification and deletion of code or other system entities. 
Indeed it may seem impossible to do otherwise. 

Modification appears more economical because it requires a smaller 

immediate capital investment than would re-creation. But this assessment is 

likely to be based on ignorance or inaccurate assessment of total life cycle costs. 

It appears simpler because study of a part of a program in its local environment 
and the paper and pencil (or interactive terminal input) exercise of code 

modification and augmentation seems to require a relatively small physical and 
organizational effort. But this is so only if the intellectual (and physical) effort 
of ensuring completeness and correctness of the change over the entire system 

and system behavioral spectrum, in itself and in relation to ah other changes 

being made concurrently or being planned, is not taken into account. And it 
normally is not; perhaps because we do not know how to or perhaps because we 

do not rate intellectual effort very highly. It appears faster because it is 
"obviously" quicker to change "a few lines of code" than to re-create an entire 
system or subsystem in which a major fiscal, temporal and human investment 
has already been made. 

But basic appearances are fallacious. The fallacy stems from the fact that 
for any individual change (repair, modification or enhancement) these 
assessments are generally correct. They become tragically wrong when the 

unending sequence of changes is considered; when the actuality of an evolving 
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usage and maintenance environment is imposed, when it is realized that system 
structure must degenerate and entropy, as a measure of disorder, increase under 

a series of, conceptually mostly unconnected, changes. 

4.2. Variety Generated by Imperfection: Continuing Maintenance 

The preceding sections have discussed the continuing evolution, functional 
and performance-wise, that a software system undergoes. Definition of system 
requirements, development of a specification, design and creation of code that 

implements that design, are all human, intellectual activities not yet subject to the 

rigor of mathematical analysis, physical laws or the accumulated, ad hoc and 
pragmatic, but nevertheless definitive, guidelines of engineering practice. Thus 
the emerging product must inevitably contain faults, design bugs as well as 
implementation errors. It must, therefore, be validated, either on completion, or 

repeatedly throughout the entire process, so that faults may be detected and 
corrected. 

Ideally such validation should be based on constructive proofs that guide 

the design process [II] or on a proof of the identity (in some sense) of the output 

of each stage of the total process with that of its predecessor stage [163. However, 

at the present time applicable techniques have only been developed for relatively 
simple, self-contained, programs. Extension of such techniques to large multi¬ 
function, multi-element systems is, at best, likely to be a slow process. 

For the foreseeable future, therefore, validation must continue to rely on 

inspection [14] and on testing. Effectiveness of the former, however formalized, 
depends heavily on the system overview, observation and understanding of the 

inspectors. The effectiveness of the latter will depend on the insight and 
understanding of the test designers who cannot possibly view the system from all 

future user perspectives. Moreover, the test designers must cope with a 
changing, combinatorial^ large, set of program boundary and environmental 
conditions, and hence with an impossibly large number of system states and 
execution trajectories. System validation activity based on these techniques can 
therefore never expect to locate aH faults, can in fact not possibly demonstrate 

that the system is faultless [12]. In summary, both inspection and testing are 

likely to be useful in ensuring elements, modules and components, that are 

relatively clear of localized faults. They become increasingly costly and 

ineffective in the search for problems stemming from global interactions and 
dependencies; in ensuring correct system operation. 

The faults that are discovered before the product is declared ready for 
customer delivery will generally be fixed immediately. However, particularly for 

multi-site, multi-configuration systems, users will, after release, subject the 
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integrated system to configurations and execution patterns to which it has not 

previously been exposed. Thus new faults will inevitably be discovered and will 

continue to require fixing. 

And the cost of this continuing maintenance is high: Figure 1 summarizes 
the fraction of programming effort spent in maintenance for a large sample of 

installations [28] around 1970. An elaborate organization is often required to 
implement the system change activity. We will discuss this in the next section. 

We note that this so-called fix or repair activity is not really repair at all. 
Hardware physically deteriorates because of wear, corrosion or fatigue. Its repair 

consists of replacement of one or more components to restore the system to its 
original state. The elimination of software malfunction, on the other hand, 

requires a change away from its designed or constructed state. Software repair 
and maintenance mostly involves redesign which in turn may introduce further 

error and is very likely to further increase complexity, for the emphasis of a 
maintenance team will be on speed, on cost minimization, or just simply on 
obtaining a correct fix. It will not generously include structural maintenance or 

improvement. And if imperfect repair or structural deterioration is likely when a 

single fault is fixed, the effect is likely to be compounded when several faults 

must be cured in the same period possibly by different groups or individuals; 
possibly concurrently with enhancement and development. Thus inevitably 
repair activity will be imperfect, will cause the creation of new problems. 

4.3. The Result of Continued Evolution: Structural Complexity 

Some programs, or parts of the same program system, may be more 
complex than others, as discussed in Section 3. What is important is that 

increasing system complexity leads to a regenerative, highly non-linear, increase 
in the effort and cost of system maintenance and also limits ultimate system 
growth [4,18,19]. The trend may be summarized in a Law of Increasing 

Unstructuredness (Entropy) [5,18,21a]: The entropy of a system increases with time, 
unless specific work is executed to maintain or reduce it. This, our second law, is 

analogous to, perhaps even an instance of, the second law of thermodynamics. 

For our present purpose its significance is not that complexity increases 

with age. That is universal experience. What is fundamental to achievement of 

better software management and minimal life-cycle costs is the recognition that 
complexity grows unless and until effort is invested in restructuring. Some part 

of one’s resources must be invested in restructuring periodically or continuously. 
The alternative is to reach such a level of complexity that further evolutionary 

progress can only be made through re-creation; total abandonment of the system 
and its replacement by a new system structured, redesigned and implemented to 
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satisfy the most recent operational requirements. In fact, the technological aim 
must be to achieve the most economic balance between continuous or periodic 
restructuring and periodic recreation. 

Clearly then it is not sufficient for a system to be initially correct. It must 

remain correct under an unending sequence of changes. To achieve and 

demonstrate continuing correctness, it is not sufficient that the system be initially 
well structured. Well structuredness must be maintained despite that sequence of 
never-ending change. And our studies of analytic models of the programming 
process [4,5,18,19] indicate that structural maintenance as the system grows is 
likely to require an ever-increasing proportion of the maintenance resources. 

Thus maintenance must ultimately become uneconomical, making re¬ 

implementation of the system inevitable. Is this point predictable? Is it possible 
to forecast the point in time at which recreation of the system is required far 

enough in advance, to ensure completion of the new system before the old one 
has collapsed, has become unmaintainable? 

4.4. An Empirical Study: The Dynamics of Evolution 

Rather surprisingly, since every aspect of system development, 
implementation and maintenance is to some degree planned, and is managed by 

people for people, the growth patterns of a system as measured by various critical 

parameters are statistically predictable. This general property is reflected in a 
third law [5,18,21a]: Measures of global system attributes may appear stochastic 
locally in time and space, but statistically are cyclically selfregulating, with 
identifiable invariances and recognizable long-range trends. 

Recent studies [5,19,20] have reported on the gross growth patterns of a 

number of very different software systems. Table VII lists some of these 

differences. The studies demonstrate quantitatively what participants in such 
projects have long known heuristically, that there is a continuous growth in the 
functional content, the sire, the need for repair and the complexity of each 
system. Figures 2 show the growth of two systems, measured in number of 
statements and modules, respectively. Notice the increase in the size trend, and 
the declining growth rates. 

From the same studies, Figures 3 capture the work rates during evolution. 
The measures, changes made and modules handled are plotted cumulatively as 

functions of system age to eliminate the effects of release overlap. The slopes of 
these plots are effectively and unexpectedly constant, implying a constant work 

rate despite improving methodology, tools and changing resources. The 
invariance of work input reflects the stabilizing influence of the many 
organizational feedback loops controlling system evolution. 
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An approach to the measurement of complexity is by the fraction of total 
units (i.e. modules) impacted by some unit change: the more units impacted the 
more diffused the change, the more complex the system. Conversely, in a well- 

structured system changes tend to remain localized. Figure 4 indicates the trend 

for two systems studied: increasing spread of changes as the systems age. 

An aspect of the interaction between the evolving system and the human 

organization which drive this evolution is depicted in Figure 5. This shows the 
linear growth trend of two systems as a function of release sequence numbers. 

Closer examination shows a cyclic subpattern of increasing period. This cyclicity 

is the manifestation of the conflict that arises in large system management, 
between the pressures for an increasing enhancement rate (positive feedback) 

and the resultant increasing resistance to change, increasing difficulty of the 
work, as structure and quality, organizational integrity and knowledge decline 

(negative feedback). 

We deduce that an organizational, as distinct from an individual, 
programming project behaves like a selfstabilizing feedback system. This is of 

course quite contrary to the view that managers have. They see it as a process 
whose progress is determined by local and global decisions as these are made. 
Theoretical models of the process [5,32] suggest that the observed behavior is 

consistent with cur developing view and understanding of the process as a 

complex, feedback-system-like activity. 

That is, gross, historical, software project data of a variety of systems and 
project attributes can be used to generate project models that represent or 

measure the evolution process. The models provide statistical invariances, 
patterns and trends that are interpretable in terms of theoretical models of the 
programming process. All may be used directly to better plan and control system 
development, maintenance and enhancement. Equally, their study leads to a 
deeper understanding of the nature and attributes of the programming process 

and of the systems that the process produces. The increasing understanding can 

be applied to direct and guide software engineering practice and the 
programming process so that the latter may yield higher quality and improved 
life-cycle properties for programming systems [21a]. 

4 5. The Life-Cycle Cost Pattern 

The previous discussion has been largely system and programming- 

oriented, directly addressing software system attributes. Quantitative global cost 
studies have also been undertaken and have produced useful models. These 
reflect the fact that a very high percentage (507.-907.) of life cycle costs of a large 
software system may be incurred in post-first-release maintenance and 
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enhancement [1,8,27], This data provides dramatic confirmation of the reality of 
the phenomena discussed above. It indicates that the initial assessment of large 
software systems, the decision to implement or not, must be based on an accurate 
projection of life-cycle costs not on the estimated cost of development and first 
implementation. But that in itself is a problem since the expenditure pattern is 
certainly very non-linear, with shape parameters being a (not well understood) 

function of the requirements of the system, the implementation and the usage 
environments. But in this area too, global system observation [27] leads to 
models that can be most effectively applied in the planning and control 
environment. Their further development should lead to specifiable and 
controllable life-cycle characteristics. 

5. Large Systems: Complex Interactions 

In the preceding section we have concentrated on a description of the 
global macro-properties of large systems. As the thermodynamicist does in 

physics or the macro-economist in economics, we have summarized observations, 
measurement and interpretation of the phenomenology of evolution of the total 
system and the programming process in their development and maintenance 
environment. 

We have, however, only briefly indicated how large a system needs to be 
before it can be expected to display the characteristics described. A precise 

measure is likely to depend at least on the nature and structure of the 
organization controlling the system, the programming methodology employed, 

and the nature of the usage environment. But the general indicator mentioned 

in Section 1 can be deduced from a clearer understanding of the underlying 
causes of the phenomena described. The basic problem is understanding; 
understanding the environmental requirements so that the system can be 

specified, designed and implemented; understanding the design and 

implementation so that the system may be validated, proven to provide the 

requirements, all the requirements and preferably nothing but the requirements; 

understanding the system’s properties, capabilities and limitations so that it may 
be learned and effectively used; understanding the system structure and content 
so that it may be maintained and enhanced. 

5.1. Program Systems 

The degree of understandability of a system depends on its structure and 
its content, the internal interconnectivity between it parts; on its complexity. 

More specifically, structure represents the degree to which, and the way in 
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which, the system may be viewed as a set of interconnected subsystems, the way 

in which the subsystems themselves may be decomposed, and so on. 
Decomposition aids understanding to the extent by which it enables system 

behavior to be understood in terms of, or deduced from, the behavior of its 
constituent parts. The degree to which this is possible depends on the regularity 
of the structure and the interpretability of the parts as well-defined primitive 

operators or transformers. Furthermore, the comprehensibility of the system will 

be heavily dependent on the actual or implied interconnectivity, interaction and 

dependence between parts, particularly where the related lines of communication 

deviate from the regular system structure. That is, the understandability and 
therefore the complexity of even the most well-structured system will depend 
additionally on the nature and extent of internal, i.e., intra-system, 

communication. 

We may now restrict ourselves to such programs where the structure and 

internal communication links or dependencies are sufficiently rational to make 
the system understandable and manageable. As requirements grow and ever 
larger programs are considered, the point will come where it is judged necessary 
to employ two (or more) people for program definition, design, implementation 
and validation. The program is too large to fall fully within the intellectual 
grasp of a single individual. This might well be the critical characteristic that 
identifies a large system. The new factor that arises at that stage is of course the 
need for human communication, intraprocess communication between two (or 

more) people. And this is a process whose effectiveness will deteriorate rapidly 
as the number of communicants increases. 

A further quantum jump in the complexity of human communication, in 
the probability of distortion and error, occurs when the number of communicants 
reaches say eight, when the need for at least two levels of management first 
emerges. The nature and degree of communication between the members of 
each of the individual groups is then radically different from that between 

members of different groups. Comprehension of the total system has certainly 
slipped from the gfasp of any one individual or of an informal team. The 

system will rapidly become a large system with all its characteristics and 
problems. 

5.2. Program Collections 

The preceding discussion has outlined the development of a single 
program into a large system. Such large systems are met today in the form of 

operating systems, transaction systems, weapons systems and so on. The 
components of such systems make frequent use of each other’s services and data 

at execution times. Often they represent the means for controlling, coordinating 



Belady and Lehman - Large Systems 119 

and exploiting what are otherwise independent hardware apparatus. Under 

certain circumstances, a set of programs may develop into a large collection of 
programs. The structure of such a collection, a set of alternative compilers or a 
number of independent application programs, may be depicted by a wide-span, 
two-level hierarchy in which a single calling element, a scheduler for example, 

selects for execution one of a number of alternative programs. Such a collection 
typically serves a common purpose yet the parts do not, in general, communicate 
directly with each other while in execution on a machine. In the sense that the 

word "system" is used, such a collection of non-interacting programs does not 
form a system. During the development and maintenance phases, loose coupling 

may exist in the form of decisions about the placement of some sub-capability in 
one or other program or in a new independent program. But during execution 
coupling arises only from the calling sequences. 

It may, of course, be that this collection of programs is sharing, in some 
sense, a common data base. In that case the structure and internal dependencies 
of the latter will act as the communications linkage that causes evolution and 

degeneration. That is, the total collection of programs with the data base out of 
which and on which they operate will now form a system. And that system may 

be expected to demonstrate all the system-like characteristics discussed. 

6. The Software Process: Knowledge, Skill and Communication 

The most natural fashion by which groups of people collaborate in a 
programming project [3a] is through decomposition of the total product into 
separately designable and implementable components [23,26,36]. To form a 

system, such components must nevertheless interact and communicate. Ideally, 
the details of protocol, paths, structure and content will be agreed by the 

designers. In practice, their decisions will be modified during the development 
process. Additional linkages may be introduced through unintended, often 
unperceived, side effects. "The evil that these do live after them" [33], In any 
event the agreement reached by the collaborators as to the exact details of the 
interface between their components must be faithfully recorded and strictly 

adhered to. Subsequent modification must similarly be agreed and recorded. 

That is, documentation must be created and updated continuously to 
record system features, individual design and implementation decisions, the 
considerations on which they were based, and the details of interfaces between 
individual system elements. The documentation, ideally a faithful record of the 
entire process and product, of all internal communication, itself provides a 
communication link between all process participants and between them and 
system users. More generally it should provide a permanent, accessible, complete 
and correct record of innumerable, transient yet possibly significant, interhuman 
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communications. In practice it is of course rare that any of this is done 

completely and correctly. 

6.1. Specialization of Human Activities 

At some stage of the process the components, the parts of the system 
created by separate groups, or by the same group at different times, must be 
linked together, integrated. As already remarked, no technology yet exists that 
will guarantee correct functioning of the resultant system. Hence the newly 

assembled system must be tested. The test responsibility will be delegated to one 

or another of the original groups, to a new group created out of the original 

groups, or to an entirely new, perhaps specialist, group. The process changes 
once again. From being in the domain of a single individual or group from 
start to finish the process transforms into a sequential, assembly-line-like, activity. 

Of course in the very small "large" program the analogy is hardly relevant. 

But when an organization develops to any size, when systems become really 

large, expensive and therefore long-lived, division of labor, specialization and 
the programming analogy of the industrial assembly line may, superficially at 

least, appear as the most cost effective design and manufacturing process. 
Architecture, design, programming and coding, data base management 

documentation, component tests, integration and system test, quality assurance, 
each activity becomes the domain of a group of specialists. A variety of system 
elements pass sequentially among them. New programmers, taken on as the more 
experienced are promoted, must gain knowledge of the system and experience of 

the process. What better way can there be of gaining that knowledge and 

experience than assigning to them responsibility for fault fixing, clearing up the 

many problems reported by users and project teams alike from day to day? 

6.2. Product vs. Process Knowledge 

There is unfortunately a fundamental fallacy in this approach. The 

assembly line can work where local processes do not require knowledge of the 
total product, and the entire process; when individual activities and parts can be 
totally specified and described, so that elementary operations are essentially 

independent. Above all a successful line operation requires that total product 

quality is the summation of the quality with which the individual operations of 
the process have been performed. 

In software, process knowledge relates to methodologies, techniques and 
tools for specifying, designing, coding, testing and integrating programs, as well 

as to the planning and management of these activities. Product knowledge 
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relates to the understanding of program elements, structure, algorithms and 
operation, individually and collectively, and their interactions. It demands a 
constant awareness of the major objective and requirements, of the multitude of 

program interactions that occur through common use of program names of 
objects, such as procedures, tables, labels, variables and so on. 

Product and process knowledge and awareness can be obtained by the 
individual only from the documentation and by word of mouth. Total 

assimilation is impossible. Hence the assembly line approach cannot be fully 
effective; is in fact highly fallible. Since no individual can have total knowledge 
or comprehension, errors are unavoidable and some must remain undiscovered 
till the product is in regular use. 

Assigning repair responsibility to the "greenhorns" is of course the greatest 

fallacy of all. They cannot, and cannot be expected to have assimilated, the 
product knowledge, or for that matter the process knowledge, that is essential for 
effective, structural maintenance, performance maintenance, and functional 

modification. Clearly repair activity should be the responsibility of those with 
the maximum system overview and insight. But these are generally the most 

experienced, the most senior, the highest paid individuals. As such they will 
often have been promoted into, or out of reach of, the project management. 

Even if still within the project, they will have architectural or design 

responsibility, will be working on more advanced system elements, will probably 
have forgotten much of the detail required for repair. 

6.3. The Part-Number Explosion 

An additional dimension of complexity in repair arises as follows: Consider 
modules as basic building blocks, perhaps thousands in number. In a release 
scheme, there is at any given time only one single valid version for each module. 

In a multi-installation system, however, repairs (fixes) will often be rejected by 

users who decide that they are not affected by the fault being fixed. The result 

is that multiple valid versions of the same generic module evolve; the most 

recent version, as well as one or more predecessors which will still be actively 
used at some sites. The predecessors cannot be invalidated to simplify 

documentation and bookkeeping, since they still exist in the environment against 

which further errors could be reported and their repair requested [6]. 

It is easy to demonstrate the explosion of the number of versions. Assume 
that an error is discovered in module A, in the presence of module B that 
already exists in at least two versions. It may happen that module A cannot be 
fixed such that it results in a single new version satisfying systems each having 
distinct versions of B. Multiple versions of A must therefore be offered even if 
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only one installation reported the error: every customer wants to be prepared 

against erroneous system behavior even if he ultimately rejects the fix offered. 
In addition to the redesign process, maintenance thus becomes a complex 
organizational activity. Additional information must therefore be created in the 

form of a dependency network that expresses the validity, or the lack of validity, 
of all fix configurations. The task of creating and updating this network creates 

an entirely new burden on the fixers and on the installation crews. 

6.4. Documentation 

The key to system control is system comprehension. One cannot hope to 
understand the purpose, the mode of functioning and the details of operation of 

a software system by visual inspection alone, though this might well be possible 

in a hardware system. One certainly cannot expect understanding of software 

systems to be discernible from the exquisite level of detail represented by present- 
day machine level or micro code. Comprehension of the system and its parts 
requires knowledge of total system objectives, of their partition into individual 

capabilities or function and of their mapping onto a systems structure and its 
structural elements. Equally, at least minimal explanation is required of the 

algorithms used in implementing the system and its subsystems at various levels. 

Clearly then a large software system must be accompanied by 
documentation. Moreover, the documentation must be readily accessible 
according to the particular needs or interests of the inquirer. And the 

documentation must keep pace with the changing system, remaining correct and 
complete. 

In practice, of course, this is very difficult. The concept of "self¬ 
documentation" of high level programming languages is important but it is 

insufficient. For machine level languages it does not apply. Thus 

documentation is necessarily an activity that runs parallel to, and must be 
interwoven with, the design, system implementation and maintenance activities. 

As such there is an inherent problem of coordination. When projects begin to 
lag and to fall behind schedule, when resources run short, the documentation 

activity, representing as it does a long-term investment that shows no immediate 
return, being essentially anti-regressive [4,18] in nature, is amongst the first to fall 
victim to the inevitable axe. Hence divergence between the system, instructional 
documentation and descriptive documentation is another very typical 
characteristic of large systems. 
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6.5. Communication as the Key to Large System Mastery 

The analysis so far has identified "communications" as the key in 
determining the pattern of development of system characteristics. It must be 
considered at several levels. System-internal communication links join its 
separate parts and make it a system. Understanding of the system and 

effectiveness of execution are both heavily dependent on the internal structure as 
determined by these links. One cannot hope to comprehend the system as a 

whole unless one is aware of the dependencies and interactions, static and 
dynamic as determined by both explicit and implicit internal communications. 
And comprehension of the system as a whole is essential to its effective 

application and its effective maintenance. 

Application and maintenance are essentially the domain of people. These 
are themselves involved in three further levels of communication. There is the 
communication between the people that jointly collaborate to build and maintain 

the system. There is the communication between them and the operators and 
users of the system. Finally, there is the communication between all of these and 

the executive management of the producer organization. It is, of course, the 

latter which controls the ultimate fate of the system [29], together with that of 
many other artifacts and activities controlled in support of organizational 
objectives and making a call on organizational resources. 

The resultant flow of documentation and verbal communication is 

enormous and, in general, not clearly structured. Yet for total mastery of the 

system it must all be integrated and comprehended. 

Why is this total comprehension so vital for successful long-range 

exploitation and control, for continuing control of a system? In general, any 
interaction with the system, whether for usage or for modification, requires a 
view of the system as a whole, as an entity. It demands a knowledge of the 
reaction of the system in its entirety as well as that of each of the parts. The 
intending user must know and be aware of the total consequence of each system 
access, and of each of the separate individual responses of which that totality is 

comprised. Even more strikingly, the individual changing the system in any way 

must tamper with the code at the lowest level of detail, but be fully aware of the 
global implication of his action over the entire system. 

This need for simultaneous awareness, at both the global and the lowest 
levels of detail, is brought about by the complex and largely invisible structure 
of system-communication, the totally unforgiving nature of system execution in 

the presence of logical error or even imprecision, the rapidity with which the 

system executes and, therefore, the high probability that any fault, any weakness, 
will be revealed sooner or later. The need is addressed by system structure and 
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documentation, by system intelligibility, supported by collective human 

knowledge and understanding of the system. 

It is to these areas that we must look for major advances in software 
engineering, in the development and maintenance of large systems. 

6.6. Structure as a Reflection of the Manufacturing Process 

Delineation of function and definition of interfaces must occur before 
autonomously managed groups can begin design and implementation activity. 

Since the theory of computing system design has not been adequately developed, 
these definitions and divisions cannot be perfect or complete. In the presence of 
an evolving environment they cannot remain near perfect or complete. Thus 
modification must be made as the work progresses, as the emerging system, its 

function and its structure, is more clearly understood, as the design coalesces and 

as the system takes shape. Strictly, each such modification should require a total 

review of all previous decisions. In practice, many modifications appear to be 

clearly (sic) Realizable to remain within the judgment and domain of a single 
group. Sometimes they clearly cannot be. But in the interest of cost 
effectiveness, review and negotiation is then limited to those groups most clearly 

and most directly involved. Implementation of modifications is largely forced 

into the constraints of the initial structure. 

Similarly, when new requirements are identified and subsequently when 

responsibility for the implementation of supporting code is assigned, 
management decisions must be based on the existing structure, on the 

availability of resources, on the existence of localized product knowledge and 

process experience. In current industrial practice it is largely based on inter- 
managerial negotiation and bargaining. System structure cannot constantly be 
reviewed and redesigned to take cognizance of the new features that may well cut 
right across existing divisions. 

Thus gradually, as the design and implementation proceeds, as the system 
ages, its structure will not only degenerate. Increasingly the relationship to 

requirements and functional structure will be obscured. The system structure will 

begin to reflect the organizational structure and process sequence that created it. 
And this is, of course, not helpful from any point of view. It cannot make the 
system more understandable, more maintainable, more fault-free. Nor can it be 

expected to improve system performance. 

Possibly the clearest example of this arbitrary structural dichotomy is the 
division of most organizations into hardware and software groups. Ironically, 
even with the emergence of new technologies, microprogramming as a 
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replacement for earlier hardware logic design has in many instances been seen as 
belonging to the hardware dominion. Thus the most basic implementation 

decision, the selection of an implementation technology, the partitioning of a 

system into its hard, mushy and soft parts is taken in almost ad hoc fashion at 
the most primitive stage of system definition. 

These approaches may have been correct in the early days of computing 
systems. It cannot be correct in today’s world. And the greatest sufferers are 
likely to be system changeability, growth flexibility and system performance. 

Perhaps the most important contributions to the solution of these problems 
has, however, already been made. We refer to the extension and generalization 
of the dual concepts of standard I/O interfaces and of channels. Invention of 
this latter concepts has made possible the individual design, optimization and 
system attachment of several generations of new I/O and storage devices. 

Performance did not suffer because of the incipient potential for device 
autonomy and system parallelism. We see the generalization of these concepts in 
the form of a functional channel or Funnel [21], as offering the way to a solution 
to the problems we have identified as discussed briefly in Section 8. 

7. System Behavior: The Optimization Problem 

Like most other artifacts, software systems are developed and enhanced 
with particular objectives in mind. The objectives are often formalized into 
optimization of system attributes, such as function, capability, cost, reliability, 

security, size, modifiability, etc. All of these attributes cannot be discussed here, 

so we single out just one quality indicator: performance. In software this is often 

considered to require an appropriate balance between execution time of a given 

subprogram which executes a sequence of functions, and the resource usage 
required to achieve this execution sequence and speed. The following presents 
some of the difficulties which software performance optimizers must face. 

7.1. System Performance - Execution Dynamics 

The factors considered so far have been viewed in relation to the 

programming process, the development and maintenance dynamics of the large 
program, its evolution dynamics. When passing to its execution dynamics, its 
behavior during execution, not surprisingly we observe the consequences of the 
same pressures, reflection of these same characteristics. 

System performance objectives can also not be precisely specified, 

implemented and achieved in the first instance, and for precisely the same 
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reasons. After all a program is, by its very nature, a complex system of 

interacting subprograms, subprograms executing on and interacting with shared 

hardware resources. Performance is not simply predictable [17] and the desired 

characteristics must be approached via an iterative modification procedure. The 
endless growth in function, size and complexity tends to degenerate performance. 
Hence further changes must be undertaken to maintain it. In fact, in the face of 

application, user and device evolution, performance characteristics normally need 
to be improved, not just maintained. Thus the execution dynamics of a system, 
desired and achieved, is a further factor in establishing and maintaining the 
characteristics we have identified, and itself comprises a further characteristic 

attribute, evolving performance. 

7.2. Local and Clobal Optimization 

The question thus arises as to the extent to which system performance can 
be optimized, at least relative to requirements and to the environment or at some 
identified point in time [9]. 

A problem is immediately apparent. Do we optimize performance under 

the requirements, environmental conditions and system state as they are now? 
Then by the time optimization has been completed and implemented, because of 
continuing evolution, neither system nor environment will be the same. 
Optimization will turn out not to have been optimization after all. On the other 

hand, one might attempt to forecast the direction and rate of the various 

evolutionary processes and optimize to some future expected state. Then the 
problem may well be that because of changing environmental conditions the 
expected state is never reached. Alternatively the forecast may become self- 
fulfilling, achieving optimum performance relative to an anticipated system state 

that is itself no longer optimum because of unanticipated environmental changes. 

The resultant dilemma may appear worse than it is in practice. It is 
certainly one that may be largely resolved if the optimizers are conscious of the 
dynamic environment in which they operate. There is, however, a more 
fundamental constraint on optimization that, in the present state of software 
engineering, is far more difficult to overcome. 

The essential nature of a software system as a set of highly interacting 

parts has been repeatedly stressed. The parts interact structurally in that they 
use common program objects. Certain aspects of optimization, storage space 
minimization for example, dictate maximization of sharing objects. Other 
interactions come about dynamically during execution. Procedures use each 
other’s services, they share information, they sequentially share hardware. All of 
these interactions should be taken into account during optimization. In practice, 
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however, such global optimization is very difficult, to say the least. Moreover, 
designers and programmers have at any given moment an essentially local view 
of the system in terms of the flow diagram or the code they have in front of 
them. They have an essentially static view of program flow. A very intensive 

intellectual effort would be required to convert this to, and assess, the action in 
terms of the coexistence of concurrent, interacting processes sharing resources. 

Thus, optimization will unfortunately often tend to be local. And it is well 

known that local optimization almost invariably leads to global sub-optimization. 

There is also a third aspect to the optimization problem in a 
multirequirement, multifunction system: it is unlikely that all capabilities can be 
simultaneously optimized. Requirements are likely to be contradictory and while 

an acceptable compromise must be reached, true optimization may not be 

meaningful. Even where requirements do not intersect functionally it is difficult 
if not impossible, as a consequence of data or resource sharing for example, to 
achieve simultaneous optimization. A data structure that is best for the 
execution of one function will be suboptimal from the point of view of the other. 

Optimizing with regard to storage usage is very likely to increase time 
requirements and vice versa. 

Summarizing then we find that optimization for large system performance 
is a delusion, one that is likely to eat up large amounts of human resources if 

nevertheless pursued too diligently. In its place, a statement of performance 

expected and required must form an integral part of the system statement of 
requirements and of the system specification at its various levels. 

8. The Future 

The methodological trends stemming from the movements toward 

structured programming certainly satisfy many of the process and system 

desiderata arising from the characteristics we have identified for large program 

systems. The block structure concept first conceived for ALGOL [2], the 
undesirability of the GOTO construct [13] and its replacement by sequence 

control structures that are related to the semantic structure of algorithms, the 
more general movement to high level languages, the channeling of 
communication via parameter-passing rather than global variables, the single 
entry-single exit subroutine or procedure, all these are ultimately directed 
towards increasing the clarity of code structure, its initial intelligibility and 
therefore its veracity. 

But, while necessary, they are not sufficient. If all the rules are understood 
and observed in their spirit as well as their letter, good structure, healthy code 
will have been created. But structure must not only be created, it must also be 
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maintained. Structural maintenance, which is strictly antiregressive, bringing no 
immediate return, must nevertheless form an integral objective and part of the 
maintenance process. 

By and large none of the concepts or techniques mentioned above help in 

structural maintenance under the conditions encountered in the industrial and 

commercial world. Even if they can be enforced during program development, 
the pressured development of fixes for field-discovered faults, or software 
support for new devices, is very likely to lead to their infringement, and hence 

system pollution, during maintenance activities. 

Moreover, as base systems get ever larger, structure will tend in any case to 
deteriorate more rapidly during maintenance. Thus the level at which the 

problem needs be solved is itself rising dramatically. Solutions which may have 
appeared adequate just a few years ago, now no longer suffice. 

One approach to the solution to these problems, program units or 
components, has been talked about for many years [22] but is only now becoming 

technically feasible. Moreover, it is only now that manufacturers and users alike 
recognize the necessity to bypass the problems created by attempts to build and 
maintain large software systems. The concept is to assemble large software 

systems from self-contained software units much as hardware systems are 

configured out of a variety of "black box" units. The recent announcement by 

IBM [30] of selectible software units highlights the practical emergence of this 
trend. De facto the announcement implies the abandonment of the large, 
integrated, system. 

The basis of the unitized approach is that defined capabilities or functions 
are implemented, packaged and offered to users as a unit. Each such unit will 

(in theory) have been totally tested as an entity against its defining specification. 
Since in practice the specification will not be absolutely complete, it must also 
have been tested against other units with which it may interface, against some 

base system which acts as a central connector for numbers of units or against 
some standardized and complete interface. Thus we elevate the problem of 
perception, comprehension and control of the large system to a new and higher 

level. Software units form the primitives of a new universe of discourse. Their 
specifications and interface definitions define the semantics and syntax of the 
design and implementation process. More naively, the process of software system 
building is then viewed simply as an extension of the standard practice of 

hardware configuration. 

Unfortunately the analogy to hardware configuration breaks down [21]. 
The critical differences, those that lead directly to the problem whose solution 
would effectively overcome most, if not all, of the large system characteristics we 
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have identified, relate directly to the two unit-descriptors referred to above, the 

specification and the interface definition. 

For the unitized system to be viable, growable and maintainable over a 

long period the specification of each and every unit must be complete, relative to 

stated requirements, correct, i.e., self-compatible, accessible and compatible with 

the specifications of a significant subset of other units, and ideally with all of 

them. Each unit must be "pluggable", imposing a known "loading” in terms of 

its use of system objects. There may be no unidentified side effects, preferably 

no side effects at all, as a result of unit connection. In Parnas’ terms [26] the 

assumption made by the unit and its environment about others must be 

completely correct and completely known. 

It is one thing to recognize the need for satisfactory specification. It is 

quite another to achieve it. For the unit concept to work in practice we require a 

unit specification which is as complete and as accessible as, say, that of a 

standard bolt or nut. This need was specifically recognized in the emphasis 

placed at a recent conference on Software Engineering [31] on requirement 

analysis. But it goes further. The need is not purely for the identification of 

requirements. Nor will all problems be solved with the development of the 

specification language that has been the main objective of specification 

technology for so long. A specification must have structure as well as content. A 

limited number of candidate structures can perhaps be deduced by identifying 

system attribute classes and subclasses, and the relationships between them, that 

together may constitute the specific character of a piece of software. These 

classes must then be structured and their alternative interrelations formatted into 

a very small number of specification skeletons that form possible frameworks into 

which a specification may be developed. After initial exploration of alternatives, 

one framework must be selected and a specification developed to fill and cover 

the entire skeleton. The resultant specification can and should be as complete as 

the framework. It can then form the definition against which the unit itself is 

developed, validated, modified -- with simultaneous modification of the 

specification - marketed, taught, used and maintained. The structured 

specification form, of course, is the first step in the development of the structured 

program. It appears to be even more fundamental to the further development of 

software engineering than is structured programming. 

The need for firm and total identification of each unit interface is also 

clear. The problems raised are more pragmatic. The problem arises from the 

fact that there is no apparent physical limit to the size of the interface analogous 

to the surface area and pin limitations arising in a hardware interface. Software 

communication is volumetric unless constrained by such rules as that of block 

structure. Even the latter, and certainly any "agreed” interface, can be violated 

"merely" by a programmer changing the point of declaration of an object, more 
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generally simply by referencing some system object external to his unit, using 

simple and direct communication as agreed between two programmers. Thus we 

face two problems: software interfaces are likely to come in an enormous variety 
of shapes and sizes; even if successfully established, they are very likely to be 

violated. It is extremely difficult to control them. 

The inherent flexibility of the software interface, plus the sociological and 

managerial problems of maintaining their integrity in the face of three or more 

generations of managers and programmers brought up without the concept of an 

impregnable interface standard has led recently to the suggestion that the 

interface between software units, at least in any one environment, be 
standardized and implemented in hardware [21]. The Funnel concept is based 
on a generalization of the channel concept [25] to the point where it is seen as 

the interface between any two functional units, not just a central processor and 
an I/O device. It standardizes interfaces by restricting and channeling all 
communications through hardware links, with the definition of each message on 

each link being contained within a message header according to a standard 
grammar. 

At first sight such an artificial constraint on inter-software unit 
communication might appear as a crippling penalty that would seriously 

degenerate system performance. However, we may recognize that the advancing 
mini-computer and micro processor technologies make the whole concept not only 
feasible but even advantageous. Funnels can be implemented in micro processor 

form. Equally, each software unit can execute on its own micro processor. This 

in turn leads to a potential for parallel execution which means that the 

performance limitations of standard hardware interfaces are more than 

overcome. Thus the large software systems of today will gradually evolve into 
the distributed systems of tomorrow. But we stress again that such distributed 

systems cannot become a reality without fundamental solutions, such as those 

outlined, to the specification and interface problems. Their complete solution, on 

the other hand, provides the potential for further major functional evolution and 
growth. 

9. Concluding Remarks 

The characteristic of continuing evolution that involves growth, 
maintenance and increasing complexity is intrinsic to the very being of large 
software systems. The resultant indeterminacies of system state, system function 
and system capability make them costly to implement, even more costly to 
maintain and could prove disastrous in certain applications. As a consequence, 
there is a limit to the size and functional content of software and software 

controlled systems in their present form. However, the developing technology of 
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micro processors, together with the concepts of total, structured specification and 

standard hardware interfaces between self-contained software units is seen as 

leading to the gradual evolution and future development of large software 

systems in the form of distributed, highly parallel, systems. 

Finally we note that large software systems display all the features 

characteristic of large systems in general: static and dynamic properties and 

behavior patterns that are being increasingly discovered and described by an 

emerging systems science [24]. But they also display peculiar properties that are 

a direct consequence of the implementation technology -- programming — used in 

creating, maintaining and enhancing these systems [21a], 

In discussing the characteristics of large systems in the present context, we 

do not attempt to specifically identify the more general systems properties. It is, 

however, well worth drawing attention to the contribution that systematic 

application of systems thinking, the "systems approach", can be expected to make 

to the future development of software engineering concepts: software systems 

engineering. 
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Figure 1 Percenl of Time Devoted to Software Maintenance 
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SIZE IN STATEMENTS 

Figure 2a: Growth of the banking system 

SIZE IN MODULES 

Figure 2b: Growth of OS 360/370 
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D.P. INDUSTRY GROWTH 

USA1 % of GNP World1-2 % of GWP2 

1970 21 2 28 .9 
1975 41 3 56 1.4 
1980 82 5 111 2.2 
1985 164 8 223 3.5 
1990 328 13 445 5.6 
1995 656(?) 21 (?) 890(?) 8.8 (?) 

1970 US dollars in billions 
Understated because Eastern Europe & USSR not included 

Table I: Projected Programming Expenditures 

US COMPUTER & PROGRAMMER CENSUS 

Computers Programmers P/C1 

1955 1,000(?) 10,000(7) 10(7) 
1960 5,400 30,000 5.6 
1965 23,000 80,000 3.5 
1970 70,000 175,000 2.5 
1975 175,000 320,000 1.8 
1980 275,000 480,000 1.74 
1985 375,000 640,000 1.71 

Number of programmers per computer 

Table II: Projected Programmer Population 



System Release # 

System age 

(years) 

« (Statements) 

xlO* if (Modules) 

Language 

Used" 

OS 360 21 6.5 3460 6300 Assembly 

DOS 360 27 6.0 -900 2300 Assembly 

A Banking System 10 3.0 45 - Algol 

Electronic Switching 

System SPI 20.4 4.0 178 - Assembly 

Electronic Switching 

System SPC-X3 18 3.0 212 - Assembly 

Building Society 

Accounting * 8 150 800 Assembly 

Table III: Size indicators of different software systems 

•In this case there is only one installation serving 80 users. The release concept is not applied and instead 

changes are incorporated as developed or tested. About 150 have been incorporated in the system per year 

over its lifetime. 

Project 

New 

Instructions 

xlO6 Man-months 

New 

Instructions 

Per Man Mouth Comments 

Apollo Control 1.45 -3800 381 Real Time 

Apollo 

Ground Support 0.53 -1800 294 Simulator 

Skylab Control 0.35 -1700 205 Real Time 

Skylab 

Ground Control 1.00 -1100 909 Simulator 

A Soft¬ 

ware House 

up to 

0.5 

up to 

12000 - 

from a collection 

of — 40 projects 

Electronic 

Switching 

System 
0.166 2500 66 

Table IVa: Programming rates observed on different projects 



Prog. 

Units 

Number of 

programmers Years 

Man- 

years 

Program 

words 

Words/ 

man-yr. 

Operational 50 83 4 101 52.000 515 

Maintenance 36 60 4 81 51.000 630 

Compiler 13 9 2 1/4 17 38,000 2230 

Translator 

(Data assembler) 15 13 2 1/2 1 1 25,000 2270 

Table IVb. Data from Bell Labs indicates productivity differences between problems involving 

a high degree of variety (the first two are basically control programs with many modules) and 

those that have better defined specific function. No one is certain how much of the difference 

is due to complexity, how much to the number of people involved. 

PRO¬ 
GRAM 

— — — PRO! 
DELIV. 
CODE 
(SOURCE 
LINES) 

)UCT — — — 

DELIV. 
DOCUM. 
(PAGES) 

RESOURCES 
TOTAL 
EFFORT 

(MM) 

AVERAGE 
!# OF 

PERSONNEL 

(#) 

DURATION 
(MONTHS) 

1 30000 200 77 6 12 
2 11164 350 51 6 8 
3 17052 450 46 5 9 
4 140000 1900 462 15 31 
5 47377 78261 241 19 13 
6 229000 6100 1665 46 36 
7 401099 138016 1022 42 24 

8 712362 44000 2176 77 28 
9 58540 7650 723 26 28 

10 - 187400 186 18 11 
11 80990 6000 527 42 12 
12 94000 4670 673 16 42 
13 76200 6520 - - 42 
14 18775 2000 199 6 32 
15 14390 1200 227 13 17 
16 35057 60 71 4 19 
17 11122 1000 43 5 8 
18 6092 427 47 6 8 
19 5342 600 14 3 4 

20 12000 3000 60 7 8 
21 19000 120 50 6 10 
22 25271 4500 169 15 12 
23 20000 2000 106 8 14 
24 12000 1000 57 6 9 
25 7000 2000 195 21 9 
26 13545 2021 112 7 17 
27 14779 400 67 10 7 
28 30000 3800 1107 16 68 
29 69200 9700 852 24 35 
30 486834 41000 11758 174 67 
31 220999 15900 2440 40 61 
32 57484 8000 - - 19 

33 128330 20880 673 67 10 
34 32026 400 136 4 36 
35 15363 700 37 5 7 
36 4747 200 10 3 3 
37 99000 8800 . - 47 

Table V: Statistics for Programs developed by a large software house 



Type of Data 

(1) Number of Machine Language Instructions 

(2) Number of Cumulative Trouble Reports 

(3) Number of Releases 

(4) Time Span of Releases 

Range 

15,000 to 3.600,000 

1 to 1685 

1 to 7 

6 to 80 Months From 

First to Last Release 

(5) Average Error Rate: 

Errors Per Month Per 1,000 Instructions 

(6) Length of Time in Test Mode 

(7) Duration of Use Per Release 

(8) Percent of Compiled Code 

(9) Percent of Assembler Code 

(10) Percent of Code Increase/Decrease From 

Release to Release 

(11) Percentage of System Disabling Errors 

(12) Number of Users 

.016 to .276 

1 to 5 Months Per Release 

1 to 31 Months 

0 to 100 

100 to 0 

-27 to +67 

0 to 20 

1 to over 1,000 

Table VI: Variation for BrogranrStatistics within a Software Organization 

Sys¬ 

tem Srce. Type 

Lang¬ 

uage 

Pur¬ 

pose 

Size 

Inst. Users Hdwr. 

Config¬ 

uration 

Impl. 

Env. 

Mang. 

Ctrl. 

Age* 

Days 

Rel. 

Seq. 

No. 

Ome¬ 

ga 

Manu- 

fact. 

urer 

Trans¬ 

action 

o s 

Assem¬ 

bly 

Limi¬ 

ted 

? 25 Var. Var. Prg. 

Centre 

Cone. 1000 10 

Bank 

Syst. 

Bank DB 

syst 

Algol Single 45k 

(H.L.) 

1 Fxd. Single One 

Group 

Unifd. 1000 11 

os/- 
360 
VS2 

Manu. 

fact- 

urer 

o s Assem¬ 

bly 

Uni¬ 

versal 

>2M 

(L.L.) 

>1000 Range Mult. Distr. Distr. 3500 23 

•Age refers to period over which data is available, the first two systems have a prehistory. 

Table VII: Three large systems whose evolution has been studied 


